Friday, March 2, 2012

Hydrogen from seawater

Seawater is an inexhaustible source of Hydrogen but the cost of generating Hydrogen from seawater is much higher compared to normal tap water. The quality of water should have a minimum electric conductivity at 0.1 micro Siemens/cm for electrolysis. Even our tap water is not up to this purity and it requires further purification. The electric conductivity of seawater is about 54,000 micro Siemens/cm.The conductivity increases due to the presence of dissolved salts. But seawater can be desalinated using the process of distillation or by the process called ‘reverse osmosis’. In both the above processes, desalination requires a large input of energy in the form of thermal or electrical. Currently the source of such energy comes from fossil fuels, which is one the biggest emitters of greenhouse gas emission. Many countries in the Middle East have shortage of fresh water and most of these countries depend on desalination of seawater for their fresh water requirements. The cost of desalinated water varies from $ 1.00 to $ 1.75/m3 depending upon the capacity, location and the cost of energy. The fresh water for potable purpose normally has a TDS (Total dissolved solids) of 500ppm (parts per million) or less and this can further be lowered to a required level using reverse osmosis. Currently Hydrogen is generated as a by-product on an industrial scale by electrolysis of saturated sodium chloride brine during the production of Caustic soda. Chlorine is another by-product in the above process. Most of Caustic soda manufacturers use Hydrogen as a fuel or for the production of Hydrochloric acid. But there is an opportunity in caustic soda plants to use Hydrogen to generate more electricity using PEM (Proton exchange membrane) Fuel cell suitable for their electrolysis. This will assist these industries to reduce their energy consumption, which is one of the highest in Chemical industries. Alternatively, offshore wind turbines can be installed to generate power for seawater desalination and Hydrogen production. Offshore wind turbines generate 50% more energy than onshore wind turbines. An integrated process to generate fresh water, Hydrogen using wind turbine is an interesting renewable energy application. The stored Hydrogen can used to generate electricity in remote islands where diesel is used as a fuel. Most of the island in Pacific use diesel predominantly for boat as well as for power generators at exorbitant costs. The wind velocity in such islands is good to generate cheap and clean electricity. For example, the island of PNG has a severe power shortage and it is well located near Coral Sea, which has one of the highest wind velocities in Pacific Ocean. An average wind velocity of 7mts/sec and above is an ideal location for wind turbines. Since these islands are small with less population, wind generated Hydrogen is an ideal solution for their power problems. They can also desalinate seawater to supply drinking water using wind generated power. In fact they can also use Hydrogen as a fuel for their boats and generate power for their cold storage for fisheries. International financial institutions and local banks should come forward to fund such projects instead of funding diesel boats and generators. These islands have pristine water and abundant fish and their main income is only tourism. Sun, Sand and wind is an ideal combination to generate renewable power all round the year and for tourism industry. It is an opportunity these islands cannot afford to miss. The author is personally involved in a wind based Hydrogen solution for a small island in pacific. The people of this island welcome such projects because it guarantees them an uninterrupted supply of clean power and drinking water. Otherwise they have to sell most of fish catches in a nearby city to buy diesel and drinking water just to survive!