Google analytics tag

Showing posts with label Syngas. Show all posts
Showing posts with label Syngas. Show all posts

Saturday, September 4, 2021

What future holds for energy and climate?

Energy industry is at a crossroad. It must now find a new direction to address the climate issue while to continue to supply energy to the world. The options are very clear. It can find new ways and means to genuinely address some of the mistakes of the past by inventing new methods to address the problem irrespective of the cost involved because time is not in our favour. Alternatively, one can redirect the issue using new terminologies and jargons and temporarily buy some time till finding an alternative and lasting solution to the problem. The first option will take time and cost more, and the second option may not take time and cost less. It seems most of the companies are choosing the second alternative. But how? Renewable energy is defined as “a source of energy that is available from the nature that can be constantly replenished”. This will guarantee the sustainability. But we are used to Carbon based fuels and technologies and therefore we also need a renewable Carbon that can substitute fossil fuels so that existing technologies for power and transportation can be used. Biomass is also derived from plants and animals like fossil fuels, but it is different in terms of time scale, and it can be replenished quickly unlike fossil fuels. It is basically made up of Carbon, Hydrogen and additionally oxygen, like fossil fuels such as coal, oil and gas but free from sulphur. Therefore, one can use the same technology such as combustion, gasification and pyrolysis etc and convert a biomass into energy, chemicals and fuels while claiming them as “renewables”. It will require oxy-combustion and gasification methods and unfortunately usage of pure Oxygen will be inevitable.Therefore, both Carbon as well as Hydrogen derived from biomass becomes “Green” and “renewable”. In addition "Green Hydrogen" using renewable energy sources such as solar and wind by water electrolysis will help decarbonisation by capturing and converting CO2 emissions into a Syngas. It requires a steep fall in the cost of renewable electricity to less than $20/Mwh and Carbon emission to be taxed at least @ $250/Mt to discourage fossil industry. Once we establish green and renewable Carbon and Hydrogen then it is only a matter of generating a syngas, combination of Hydrogen and Carbon monoxide with various ratios to synthesis various chemicals including bio crude oil that leads to refineries to produce petrol, diesel and aviation fuels. We will be back into the game but with different brand called “Green and renewable”; it is "an old wine in a new bottle" Everybody is happy and politicians can now heave a sigh of relief and feel comfortable. One can also use “blue hydrogen’ as a mix to green hydrogen and synthesis various downstream chemicals such as Ammonia, urea etc. Thus they can use them to decarbonise the fossil economy. In either way there is still an issue of CARBON EMISSION that needs to be addressed. They may claim biofuel as Carbon neutral, but it will not stop the increasing concentration of GHG into the atmosphere or climate change. Therefore Carbon tax will be inevitable. Bioenergy and renewable energy may increase the sustainability but will not address the issue of global warming and climate change. Nature does not discriminate between ‘bio-carbon’ and ‘fossil carbon’. Only “Carbon Recycling Technology” can address the problem of global warming and climate change. The simplest method will be to to collect CO2 emission from all petrol and diesel engines in a liquid form using a retrofittable device in the vehicle and convert them in a centralised facility to Syngas using renewable Hydrogen .The syngas can be converted into renewable crude using F-T reaction hat can be processed in a refinery for recycling into petrol, diesel and aviation fuel so that we can eliminate technologies such as large batteries and Fuel cells. By this way we can ensure the CO2 level in the atmosphere is stabilised and existing infrastructures are utilised. The availability of biomass for a radical change will be an issue especially in Asia where growing population requires more land for agriculture and deforestation is a common problem. Perhaps we need completely a new electricity generation technology that can "drive electrons to flow in a super conductor" and a magnetic storage using a cryogenic fluid. Unfortunately not many researchers are working in this direction.

Thursday, July 11, 2013

How to control Carbon emissions in coal-fired power plants?


“Over two-thirds of today’s proven reserves of fossil fuels need to still be in the ground in 2050 in order to prevent catastrophic levels of climate change” – a warning by scientists. There is a great deal of debate on climate change due to man-made Carbon emissions and how to control it without any further escalation. The first obvious option will be to completely stop the usage of fossil fuel with immediate effect. But it is practically not feasible unless there is an alternative Non-Carbon fuel readily available to substitute fossil fuels. The second option will be to capture carbon emission and bury them under ground by CCS (Carbon capture and sequestration) method. But this concept is still not proven commercially and there are still currently many uncertainties with this technology, the cost involved and environmental implications etc.The third option will be not to use fresh fossil fuel for combustion or capture and bury the Carbon emissions but convert the Carbon emissions into a synthetic hydrocarbon fuel such as synthetic natural gas (SNG) and recycle them. By this way the level of existing Carbon emission can be maintained at current levels without any further escalation. At least the Carbon emission levels can be reduced substantially and maintained at lower levels to mitigate climate changes. It is technically feasible to implement the third option but it has to be implemented with great urgency. One way of converting Carbon emission is to capture and purify them using conventional methods and then react with Hydrogen to produce synthetic natural gas (SNG) CO2 + 4 H2 ----------> CH4 + 2 H2O The same process will be used by NASA to eliminate carbon built-up in the flights by crew members during their long voyage into the space and also to survive in places like Mars where the atmosphere is predominantly carbon dioxide. But we need Hydrogen which is renewable so that the above process can be sustained in the future .Currently the cost of Hydrogen production using renewal energy sources are expensive due to high initial investment and the large energy consumption. We have now developed a new process to generate syngas using simple coal, which is predominantly Hydrogen to be used as a Carbon sink to convert Carbon emissions into synthetic natural gas (SNG). The same Hydrogen rich syngas can be directly used to generate power using gas turbine in a simple or combined cycle mode. The Carbon emission from the gas turbine can be converted into SNG (synthetic natural gas) using surplus Hydrogen-rich syngas. The SNG thus produced can be distributed for CHP (combined heat and power) applications so that the Carbon emission can be controlled or distributed. By implementing the above process one should be able to maintain Carbon at specific level in the atmosphere. Existing coal fired power plants can retrofit this technology so that they will be able to reduce their Carbon emissions substantially; they can also produce SNG as a by-product using their Carbon emissions and achieve zero Carbon emission at their site while generating revenue by sale of SNG. Coal is the cheapest and widely used fossil fuel for power generation all over the world. Therefore it will be a win situation for everyone to use coal and also to reduce Carbon emissions that can address the problems of climate change. Meanwhile research is going on to generate renewable Hydrogen cheaply directly from water using various technologies. But we believe we are still far away from achieving this goal and we require immediate solution to address our climate change problems. Recently BASF made a press release :www.basf.com/group/pressrelease/P-13-351‎ claiming a break-through technology to generate Hydrogen from natural gas without any CO2 emissions.

Saturday, July 28, 2012

Can alternative energy combat global warming?


The world is debating on how to reduce carbon emission and avert the disastrous consequences of global warming. But the emissions from fossil fuels continue unabated while the impact of global warming is being felt all over the world by changing weathers such as flood and draught. It is very clear that the current rate of carbon emission cannot be contained by merely promoting renewable energy at the current rate. Solar, wind, geothermal, ocean wave and OTEC (ocean thermal energy conversion) offer clean alternative energy but currently their total combined percentage of energy generation is only less than 20% of the total power generation. The rate of Carbon reduction by renewable energy do not match the rate of Carbon emission increase by existing and newly built fossil power generation and transportation, to maintain the current level of Carbon in the atmosphere. The crux of the problem is the rate of speed with which we can reduce the Carbon emission in the stipulated time frame. It is unlikely to happen without active participation of industrialized countries such as US, China, India, Japan, EU and Australia by signing a legally binding agreement in reducing their Carbon emissions to an accepted level. However, they can reduce their emissions by increasing the efficiency of their existing power generation and consumption by innovative means. One potential method of carbon reduction is by substituting fossil fuels with biomass in power generation and transportation. By using this method the energy efficiency is increased from current level of 33% to 50-60% in power generation by using gasification technologies and using Hydrogen for transportation. The Fixed carbon in coal is about 70% while the Carbon content in a biomass is only 0.475 X B (B-mass of oven-dry biomass). For example, the moisture content of a dry wood is about 19%,which means the Carbon mass is only 38% in the biomass. To substitute fossil fuels, the world will require massive amounts of biomass. The current consumption of coal worldwide is 6.647 billion tons/yr (Source:charts bin.com)and the world will require at least 13 billion tons/yr of biomass to substitute coal .The total biomass available in the world in the form of forest is 420 billion tons which means about 3% of the forest in the world will be required to substitute current level of coal consumption. This is based on the assumption that all bioenergy is based on gasification of wood mass. But in reality there are several other methods of bioenergy such as biogas, biofuels such as alcohol and bio-diesel from vegetable oils etc, which will complement biogasification to reduce Carbon emission. Another potential method is to capture and recover Carbon from existing fossil fuel power plants. The recovered Carbon dioxide has wider industrial applications such as industrial refrigeration and in chemical process industries such as Urea plant. Absorption of Carbon dioxide from flue gas using solvents such as MEA (mono ethanolamine) is a well established technology. The solvent MEA will absorb Carbon dioxide from the flue gas and the absorbed carbon dioxide will be stripped in a distillation column to separate absorbed carbon dioxide and the solvent. The recovered solvent will be reused. The carbon emission can be reduced by employing various combinations of methods such as anaerobic digestion of organic matters, generation of syngas by gasification of biomass, production of biofuels, along with other forms of renewable energy sources mentioned above. As I have discussed in my previous articles, Hydrogen is the main source of energy in all forms of Carbon based fuels and generating Hydrogen from water using renewable energy source is one of the most potential and expeditious option to reduce Carbon emission.

Thursday, July 19, 2012

Can Bio-gasification transform our world?


Carbon neutral biomass is becoming a potential alternative energy source for fossil fuels in our Carbon constrained economy. More and more waste –to-energy projects is implemented all over the world due to the availability of biomass on a larger scale; thanks to the increasing population and farming activities. New technological developments are taking place side by side to enhance the quality of Biogas for power generation. Distributed power generation using biogas is an ideal method for rural electrification especially, where grid power is unreliable or unavailable. Countries like India which is predominantly an agricultural country, requires steady power for irrigation as well as domestic power and fuel for her villages. Large quantity of biomass in the form of agriculture waste, animal wastes and domestic effluent from sewage treatment plants are readily available for generation of biogas. However, generation of biogas of specified quality is a critical factor in utilizing such large quantities of biomass. In fact, large quantity of biomass can be sensibly utilized for both power generations as well as for the production of value added chemicals, which are otherwise produced from fossil fuels, by simply integrating suitable technologies and methods depending upon the quantity and quality of biomass available at a specific location. Necessary technology is available to integrate biomass gasification plants with existing coal or oil based power plants as well as with chemical plants such as Methanol and Urea. By such integration, one can gradually change from fossil fuel economy to biofuel economy without incurring very large capital investments and infrastructural changes. For example, a coal or oil fired power plant can be easily integrated with a large scale biomass plant so that our dependency on coal or oil can be gradually eliminated. Generation of biogas using anaerobic digestion is a common method. But this method generates biogas with 60% Methane content only, and it has to be enriched to more than 95% Methane content and free from Sulfur compounds, so that it can substitute piped natural gas with high calorific value or LPG (liquefied petroleum gas). Several methods of biogas purification are available but chemical-free methods such as pressurized water absorption or cryogenic separation or hollow fiber membrane separation are preferred choices. The resulting purified biogas can be stored under pressure in tanks and supplied to each house through underground pipelines for heating and cooking. Small business and commercial establishments can generate their own power from this gas using spark-ignited reciprocating gas engines (lean burnt gas engines) or micro turbines or PAFCs (phosphoric acid fuel cells) and use the waste heat to air-condition their premises using absorption chillers. In tropical countries like India, such method of distributed power generation is absolutely necessary to eliminate blackouts and grid failures. By using this method, the rural population need not depend upon the state owned grid supplies but generate their own power and generate their own gas, and need not depend on the supply of rationed LPG cylinders for cooking. If the volume of Bio-methane gas is large enough, then it can also be liquefied into a liquified bio-methane gas (LBG) similar to LNG and LPG. The volume of bio-methane gas will be reduced by 600 times, on liquefaction. It can be distributed in small cryogenic cylinders and tanks just like a diesel fuel. The rural population can use this liquid bio-methane gas as a fuel for transportation like cars, trucks, buses, and farm equipments like tractors and even scooters and auto-rickshaws. Alternatively, large-scale biomass can be converted into syngas by gasification methods so that resulting biomass can be used as a fuel as well as raw materials to manufacture various chemicals. By gasification methods, the biomass can be converted into a syngas (a mixture of Hydrogen and Carbon monoxide) and free from sulfur and other contaminants. Syngas can be directly used for power generation using engines and gas turbines. Hydrogen rich syngas is a more value added product and serves not only as a fuel for power generation, but also for cooking, heating and cooling. A schematic flow diagram Fig 3, Fig4 and Fig 6 (Ref: Mitsubhisi Heavy Industries Review) shows how gasification of biomass to syngas can compete with existing fossil fuels for various applications such as for power generation, as a raw material for various chemical synthesis and as a fuel for cooking, heating and cooling and finally as a liquid fuel for transportation. Bio-gasification has a potential to transform our fossil fuel dependant world into Carbon-free world and to assist us to mitigate the global warming.

Wednesday, July 11, 2012

Fuelcell power using Biogas


Fuel cell technology is emerging as a base-load power generation technology as well as back-up power for intermittent renewable energy such as solar and wind, substituting conventional storage batteries. However, Fuelcell requires a Fuel in the form of Hydrogen of high purity. The advantage of Fuel cell is, its high electrical efficiency compared to conventional fossil fuel power generation technology, using Carnot cycle. Fuel cell is an electro-chemical device similar to a battery and generates power using electro-chemical redox reaction silently with no gaseous emission, unlike engines and turbines with combustion, rotary movements and gaseous emissions. The fuel Hydrogen can be generated using a renewable energy sources such as solar and wind as described in my previous articles, “Solar Hydrogen for cleaner future” dated 4 July 2012, and “Renewable Hydrogen for remote power supply “dated 28 June 2012. Alternatively, Hydrogen can also be generated using biomass through Biogas. Biogas is an important source of renewable energy in the carbon constrained economy of today’s world. The biogas can be generated from waste water and agro-waste by anaerobic digestion using enzymes. Biomass such as wood waste can also be gasified to get syngas, a mixture of Hydrogen and Carbon dioxide. In anaerobic digestion, the main product will be methane gas accompanied by carbon dioxide and nitrogen while the main product in gasification will be Hydrogen, cabon monoxide and carbon dioxide and oxides of Nitrogen. Whatever may be the composition of the resulting gas mixture, our focus will be to separate methane or Hydrogen from the above mixture. In anaerobic digestion, the resulting Methane gas has to be steam reformed to get Hydrogen gas suitable for Fuel cell application. In gasification, the resulting Syngas has to be separated into pure Hydrogen and Carbon dioxide so that pure Hydrogen can be used as a fuel in Fuel cell applications. As I have outlined in many of my previous articles, Hydrogen was the only fuel we have been using all these years and we are still using it in the form of Hydrocarbons and it will continue to be the fuel in the future also. The only difference is future Hydrogen will be free from carbon. We have to address two issues to mitigate Carbon emission, and it can be done by 1.Elimination of Carbon from the fuel source. 2. Generation of Renewable and Carbon free clean energy directly from solar and wind. One option to eliminate Carbon from the fuel source is to use Biomass as the raw material to generate Hydrogen so that fresh Carbon will not be added into the atmosphere by emissions .The second option is to generate pure Hydrogen from water by electrolysis using renewable energy such as wind and solar. Environmentally friendly waste-to-energy projects are becoming popular all over the world. But currently most of these waste-to-energy projects generate either Biogas (Methane) by anaerobic digestion or Syngas (Hydrogen and Carbon dioxide) by gasification. Both these gases require further purification before they can be used as a fuel for power generation. The Methane content in the Biogas (about 60% methane and 40% Carbon dioxide with other impurities) needs to be enriched to 90% Methane and free from other impurities. The composition of a typical Biogas is shown in table1. The resulting purified methane gas will be reformed using steam reformation in presence of a catalyst to obtain syngas; finally Hydrogen should be separated from resulting syngas so that it can be used directly into the Fuelcell.The common Fuel cell used for this application is invariably Phosphoric acid fuel cell. PAFC uses 100% Phosphoric acid in Silicon carbide matrix as an electrolyte. PAFC is a self contained unit completely enclosed in a cabin consisting of a gas reformer, Fuellcell power generator, Power conditioning unit and other auxiliaries. The PAFC is of modular construction with capacities ranging from 100Kw up to 500Kw as a single unit. It can be installed outdoor in the open and it can be readily connected to a piped Biogas. It can also be connected to existing piped natural gas or LPG bullet as a stand-by fuel. Any waste-to energy project can be integrated with Fuel cell power generation with CHP application to get maximum economic and environmental benefits. Hydrogen derived from biomass will be an important source of fuel in the future of clean energy; and Fuel cell will become an alternative power generation technology for both stationary power generation and transportation such as Fuel cell car or Hybrid cars. PAFC is a compact, self-contained power generation unit that is used even for base load power. The electrical efficiency of PAFC is about 42% .It is suitable for CHP applications so that the total energy efficiency can reach up to 85%.It is ideal for supplying continuous power 24x7 and also to use waste heat for space heating or space air-conditioning with an absorption chiller in CHP applications. The ideal candidates for PAFC power generation using CHP will be hospitals, super markets, Data centers, Universities or any continuous process industry.PAFC is currently used as a backup power for large scale renewable energy project with an access to piped natural gas. A schematic flow diagram of a fuel cell power generation is shown in Fig 3 using biogas at Yamagata sewage treatment plant in Japan. Biomass based Fuecell power generation has a great potential all over the world irrespective of location and size of the country.

Friday, March 9, 2012

The solar,wind and water-three keys to Energy independance

Renewable Hydrogen is the key that can provide us energy independence in the twenty first century. Fossil fuel usage will still continue for some more time because the world has already invested massively on fossil fuel infrastructures. The stacks are too high for them to switch over to renewable over night. It is the Mother Nature who provided us coal, oil and gas all these years using her manufacturing process under the earth over millions of years. But we human beings exceeded her tolerance limit by emitting greenhouse emission by our rapid growth in population and industrialisation.We failed to discover an alternate fuel in time and continued with an age old technology with all its inefficiencies. Inefficiencies breed pollution. We were keen to use the heat of combustion by burning a fossil fuel to generate electricity or drive our cars, but paid no attention to the gases released during such combustion. We learnt Thermodynamics and the relationship between heat and work, but failed to understand the consequences of gases of combustion and its impact on our environment. There are two issues involved in burning a fossil fuel to generate electricity. The heat of combustion is an exothermic reaction and we get certain amount of heat. Then we convert this heat energy into electrical energy and the overall efficiency of such conversion is about thirty-five percent. Only thirty-five percent of the heat input energy becomes electrical energy and the remaining sixty-five percent heat along with gases of combustion are released into atmosphere. Of course part of this heat is recovered in a commercial plant, but the bulk of heat is released into the atmosphere as greenhouse gases. We failed to understand the potential of Hydrogen even though we used Hydrocarbon for several decades. We even discovered Urea, the fertilizer that caused ‘green revolution’ in agriculture, using the same Hydrogen present in the Hydrocarbon feedstock. It is time for us to make best utilization of a fossil fuel to its maximum potential when we burn each kilogram of fuel. We should burn coal not just with air but also with steam so that we can generate Hydrogen rich gas that can run a gas turbine in a combined cycle or run our cars on roads. Such a conversion will lead to a substantial increase in energy efficiency as well as in greenhouse gas emission reduction. Governments in industrialized countries should make it a mandatory to convert all their power plants to syngas generation as described above. They should also discourage new plants using fossil fuels with punitive power tariffs and encourage renewable energy projects with higher tariffs. Governments can also impose similar tariffs for transportation depending upon the fuel used such as fossil fuel or Hydrogen. Governments should encourage renewable energy projects such as solar and wind to generate Hydrogen from water as centralized power plants and distribute DC (direct current) by rural electrification. If the country side is electrified using this system then, agriculture, business and industries can thrive in rural areas. Direct current (DC) distribution net work can be installed in rural areas and encourage people to use energy efficient appliances such as Direct current air-conditioners with energy star ratings and tariffs. Governments can bring about these changes by adopting a ‘carrot and stick ‘policy to encourage renewable and discourage fossil fuels. Solar energy is the key from which all other forms of energy emanate such as wind, geothermal and ocean thermal energy conversion system. It is of paramount importance to increase the efficiency of renewable systems and improve energy efficiencies of appliances we use. It is simpler to use LED bulbs using a Direct current generated by Renewable Hydrogen. It is once again the Mother Nature, who can come to the rescue of human beings through solar, wind and water to generate clean energy for the twenty first century. Energy generation and distribution is no longer a business or revenue issue but a moral and ethical issue for Governments. It is only people who can bring about such sweeping changes by electing the right Government who can care for the environment. The future generation will judge us only based on what kind of an environment we leave them behind.

Thursday, March 8, 2012

Hydrogen from Coal

Coal is an important fuel that helped industrial revolution. It is still a predominant fuel for power generation in many parts of the world. It is also an important raw material for number of chemicals and they directly compete with Hydrocarbons such as Naptha.It is abundantly available and it is cheap. We are still able to generate electricity at 5 cents per kwhr using coal. But, now we are entering into a new phase of energy generation and distribution, due to changing environmental and climatic issues of the twenty first century. We require completely a new fuel to address these issues; a fuel that has a higher heat content, which can generate more power per unit value of fuel, and yet, generates no pollution. It is a challenging job and the world is gearing up to meet these challenges. They affect the whole world because any issues concerning energy impacts each and every one of us. Many industrialized countries around the world are reluctant to sign an agreement that compels them to reduce their greenhouse emission to an acceptable level set by UN panel of scientists. Governments such as US, China and India are reluctant to sign such an agreement because their economy and growth depends upon cheap energy, made from coal. Such an agreement will be detrimental to their progress, and the leaders of these nations are not prepared to sign such an agreement. They also understand that world cannot afford to continue to use coal as they have used in the past. It is simply unsustainable. It is a precarious situation and they need to carefully plan their path forward. On one hand, they need to maintain their industrial and economical growth, and on the other hand they need to reduce their emissions and save the world, from catastrophic consequences of global warming. A simple analysis of the fuel will indicate that Hydrogen is a potential energy source for the future. It has energy content at least five times more than a coal for a unit value. Coal has an average heat content of 5000 kcal /kg while Hydrogen has an average heat content of 39,000 kcal/kg. Coal has a number of impurities such as ash, sulfur, phosphorous, other than carbon. Burning coal will emit greenhouse gases with toxic fumes that have to be removed. Therefore, these industrialized countries are now looking ways to generate Hydrogen from coal; that too at a cost which will be comparable to other current fuels such as natural gas. It is not an easy task because natural gas is formed by Mother Nature over several hundred thousand years. It is readily available and there is no manufacturing cost except processing cost. We are used to free energy from Mother Nature. This is the crux of the issue. Hydrogen is the most abundantly available element on earth; yet it is not available in a free form. It is available as a compound, for example, joined with oxygen forming water H2O molecule; or joined with Carbon forming Methane CH4 molecule.This Hydrogen should be separated in a free form, and this separation requires energy. How can coal, which is just a Carbon, generate Hydrogen? It requires an addition of water in the form of steam. When coal is gasified with air and steam, a mixture of Hydrogen and Carbon dioxide is generated, known as Syngas (synthesis gas). 2C + H2O+O2 ------- 2H2 +2 CO2 The syngas is separated into Hydrogen and carbon dioxide using various methods using their difference in densities. The Hydrogen can be stored under pressure for further use. Research work is currently under way to capture carbon dioxide for sequestering. Carbon sequestration is a method of capturing carbon dioxide and storing it in a place where it cannot enter the atmosphere. But the technical feasibility and economic viability of such a system is yet to be established. Carbon sequestration is a new concept and the cost of sequestration can potentially increase the cost of energy derived from Hydrogen despite the fact, Hydrogen has energy content five times more the carbon. However, there is no quick fix for our energy problems, and we have to reconcile to the fact that the energy cost will increase in the future but eventually reduce the greenhouse emissions. These developed countries should at least disclose to the rest of the world, how they plan to reduce their emissions and their action plans; such disclosure should be subject to inspection by UN panel. In the absence of any concrete mechanism, it will be impossible to stop the global warming in the stipulated time frame considering the fact that a number of coal/oil/gas fired power plants are already under implementation.

Wednesday, March 7, 2012

All roads lead to Hydrogen

We have discussed about the formation of fossil fuel as part of carbon cycle. It takes several million years before the carbon from the plants and animals turn into fossil fuels due to chemical reactions under higher pressure and temperature. The fossil fuels include solid coal, liquid oil and gaseous Hydrocarbons such as crude oil and natural gas. The natural gas forms the top layer due to its lightness. Natural gas is also the result of anaerobic reaction by microorganism in the absence of air converting organic matter under the earth into a gas. The gas during exploration comes with great pressure to be transported across several kilometers. We are actually duplicating this process to generate Biogas from our food and agriculture wastes and other organic matters. The end product is a mixture of methane and carbon dioxide. During oil and gas exploration we get methane and carbon dioxide and other gases such as Hydrogen sulfide depending upon the location of the oil field. That is why Sulfur and other products such as Mercaptnans are present in crude oil and natural gas. When these fossil fuels are burnt the gaseous combustion products contain sulfur dioxide and oxide of nitrogen along with oxides of carbon. Air is normally used for combustion which is a mixture of Nitrogen and oxygen in the ration of 71:21,therefore, the combustion products invariably consist of oxides of nitrogen. We are so addicted to oil and we are even trying to convert natural gas into oil, similar to gasoline using GTL (gas to oil) process. However all these combustion processes can be reacted with steam to form synthesis gas, a precursor for liquid Hydrocarbon. It is quite obvious that water in the form of steam is a key component in future energy mixes because that is how one can introduce a Hydrogen molecule in the reaction process. Hydrogen in the form of water is the key. Even if we can successfully steam reform natural gas to get Hydrogen we still have problems deal thing with traces of sulfur and mercaptans, potential poison for catalyst in PEM (Proton exchange membrane) Fuelcells.The idea is to generate Hydrogen using a carbonaceous source such as fossil fuel for simple reasons. It is abundantly available but it emits greenhouse gases; but when you introduce Hydrogen into the mix then there is a good possibility of reducing greenhouse emission, even though we still use fossil fuels. Secondly, we are cautious to handle pure Hydrogen due to its explosive nature and the best available option is to mix Hydrogen with combustion products of fossil fuels. The result is the formation of Syngas. Syngas is an important intermediary that will lead us to the Hydrogen economy of the futue.The syngas can be generated by various methods as long as we have an organic source and water (steam) source. In fact all food and agriculture waste can be converted into syngas either using a biological process or by gasification process. Both will lead to formation of Methane or syngas. Syngas is a mixture of hydrogen with carbon dioxide formed in the following sequences, starting with carbon ,air and steam. 2C + O2-------- 2 CO, 2CO + 2H2O---------2H2 +2 CO2 The carbon source can be any organic source such as coal, coke, wood etc.As you can see in the reaction, the quantity of carbon source is equally important to generate Hydrogen. One can say that Syngas is a match maker between fossil economy of the past and Hydrogen economy of the future. It is a very important chemical reaction that will change the future energy scene in the world. That is why many counties like US and Australia and in Europe who have considerable coal deposits are now trying to generate Hydrogen from coal. Once coal is converted into a gas such as syngas then they are one step closer to separate Hydrogen from syngas.Number of companies and Research organizations around the world are trying to develop an efficient and economical method of generating Hydrogen from coal. They have to find suitable conditions to generate higher yield of Hydrogen from syngas and then find an efficient system to separate Hydrogen from carbon dioxide. As I have mentioned earlier, the purity of Hydrogen is important especially when we use coal as the basic material because it contains number of impurities to be removed before converting into a syngas. As we can see, all energy roads are now leading to Hydrogen as the ultimate clean fuel of the future. When the demand for Hydrogen increase, the demand for water too will increase because it is the direct source of Hydrogen. Energy and water are two side of the same coin as I have mentioned earlier in the past.