Google analytics tag

Thursday, July 19, 2012

Can Bio-gasification transform our world?


Carbon neutral biomass is becoming a potential alternative energy source for fossil fuels in our Carbon constrained economy. More and more waste –to-energy projects is implemented all over the world due to the availability of biomass on a larger scale; thanks to the increasing population and farming activities. New technological developments are taking place side by side to enhance the quality of Biogas for power generation. Distributed power generation using biogas is an ideal method for rural electrification especially, where grid power is unreliable or unavailable. Countries like India which is predominantly an agricultural country, requires steady power for irrigation as well as domestic power and fuel for her villages. Large quantity of biomass in the form of agriculture waste, animal wastes and domestic effluent from sewage treatment plants are readily available for generation of biogas. However, generation of biogas of specified quality is a critical factor in utilizing such large quantities of biomass. In fact, large quantity of biomass can be sensibly utilized for both power generations as well as for the production of value added chemicals, which are otherwise produced from fossil fuels, by simply integrating suitable technologies and methods depending upon the quantity and quality of biomass available at a specific location. Necessary technology is available to integrate biomass gasification plants with existing coal or oil based power plants as well as with chemical plants such as Methanol and Urea. By such integration, one can gradually change from fossil fuel economy to biofuel economy without incurring very large capital investments and infrastructural changes. For example, a coal or oil fired power plant can be easily integrated with a large scale biomass plant so that our dependency on coal or oil can be gradually eliminated. Generation of biogas using anaerobic digestion is a common method. But this method generates biogas with 60% Methane content only, and it has to be enriched to more than 95% Methane content and free from Sulfur compounds, so that it can substitute piped natural gas with high calorific value or LPG (liquefied petroleum gas). Several methods of biogas purification are available but chemical-free methods such as pressurized water absorption or cryogenic separation or hollow fiber membrane separation are preferred choices. The resulting purified biogas can be stored under pressure in tanks and supplied to each house through underground pipelines for heating and cooking. Small business and commercial establishments can generate their own power from this gas using spark-ignited reciprocating gas engines (lean burnt gas engines) or micro turbines or PAFCs (phosphoric acid fuel cells) and use the waste heat to air-condition their premises using absorption chillers. In tropical countries like India, such method of distributed power generation is absolutely necessary to eliminate blackouts and grid failures. By using this method, the rural population need not depend upon the state owned grid supplies but generate their own power and generate their own gas, and need not depend on the supply of rationed LPG cylinders for cooking. If the volume of Bio-methane gas is large enough, then it can also be liquefied into a liquified bio-methane gas (LBG) similar to LNG and LPG. The volume of bio-methane gas will be reduced by 600 times, on liquefaction. It can be distributed in small cryogenic cylinders and tanks just like a diesel fuel. The rural population can use this liquid bio-methane gas as a fuel for transportation like cars, trucks, buses, and farm equipments like tractors and even scooters and auto-rickshaws. Alternatively, large-scale biomass can be converted into syngas by gasification methods so that resulting biomass can be used as a fuel as well as raw materials to manufacture various chemicals. By gasification methods, the biomass can be converted into a syngas (a mixture of Hydrogen and Carbon monoxide) and free from sulfur and other contaminants. Syngas can be directly used for power generation using engines and gas turbines. Hydrogen rich syngas is a more value added product and serves not only as a fuel for power generation, but also for cooking, heating and cooling. A schematic flow diagram Fig 3, Fig4 and Fig 6 (Ref: Mitsubhisi Heavy Industries Review) shows how gasification of biomass to syngas can compete with existing fossil fuels for various applications such as for power generation, as a raw material for various chemical synthesis and as a fuel for cooking, heating and cooling and finally as a liquid fuel for transportation. Bio-gasification has a potential to transform our fossil fuel dependant world into Carbon-free world and to assist us to mitigate the global warming.

Monday, July 16, 2012

Hydrogen from seawater for Fuelcell


We have used Hydrocarbon as the source of fuel for our power generation and transportation since industrial revolution. It has resulted in increasing level of man-made Carbon into the atmosphere; and according to the scientists, the level of carbon has reached an unsustainable level and any further emission into the atmosphere will bring catastrophic consequences by way of climate change. We have already witnessed many natural disasters in a short of span of time. Though there is no direct link established between carbon level in the atmosphere and the global warming, there is certainly enough evidence towards increase in the frequency of natural disasters and increase in the global and ocean temeperatures.We have also seen that Hydrogen is a potential candidate as a source of future energy that can effectively substitute hydrocarbons such as Naphtha or Gasoline. However, hydrogen generation from water using electrolysis is energy intensive and the source of such energy can come only from a renewable source such as solar and wind. Another issue with electrolysis of water for Hydrogen generation is the quality of water used. The quality of water used for electrolysis is high, meeting ASTM Type I Deionized Water preferred, < 0.1 micro Siemen/cm (> 10 megOhm-cm). A unique desalination technology has been developed by an Australian company to generate onsite Hydrogen directly from seawater. In conventional seawater desalination technology using reverse osmosis process only 30-40% of fresh water is recovered as potable water with TDS less than 500 ppm as per WHO standard. The balance highly saline concentrate with TDS above 65,000 ppm is discharged back into the sea which is detrimental to the ocean’s marine life. More and more sweater desalination plants are set up all over the world to mitigate drinking water shortage. This conventional desalination is not only highly inefficient but also causes enormous damage to the marine environment. The technology developed by the above company will be able to recover almost 75% of fresh water from seawater and also able to convert the concentrate into Caustic soda lye with Hydrogen and Chlorine as by-products by electrolysis. The discharge into the sea is drastically reduced to less than 20% with no toxic chemicals. This technology has a potential to revolutionize the salt and caustic soda industries in the future. Caustic soda is a key raw material for a number of chemical industries including PVC.Conventionally, Caustic soda plants all over the world depends on solar salt for their production of Caustic soda.Hydrogne and Chlorine are by-products.Chlrine is used for the production of PVC (poly vinyl chloride) and Hydrogen is used as a fuel. In the newly developed technology, the seawater is not only purified from other contaminants such as Calcium, Magnesium and Sulfate ions present in the seawater but also concentrate the seawater almost to a saturation point so that it can be readily used to generate Hydrogen onsite. The process is very efficient and commercially attractive because it can recover four valuable products namely, drinking water, Caustic soda lye, Chlorine and Hydrogen. The generated Hydrogen can be used directly in a Fuel cell to generate power to run the electrolysis. This process is very ideal for Caustic soda plants that are currently located on seashore. This process can solve drinking water problems around the world because potable water becomes an industrial product. The concentrated seawater can also be converted in a salt by crystallization for food and pharmaceutical applications. There is a growing gap between supply and demand of salt production and most of the chemical industries are depending upon the salt from solar pans. Another potential advantage with this technology is to use wind power to desalinate the water. Both wind power and Hydrogen will form a clean energy mix. It is a win situation for both water industry and the environment as well as for the salt and chemical industries. In conventional salt production, thousands of hectares of land are used to produce few hundred tons of low quality salt with a year long production schedule. There is a mis- match between the demand for salt by large Caustic soda plants and supply from primitive methods of solar production by solar evaporation contaminating cultivable lands. The above case is an example of how clean energy technologies can change water, salt and chemical industries and also generate clean power economically, competing with centralized power plants fuelled with hydrocarbons. Innovative technologies can solve problems of water shortage, greenhouse gases, global warming, and environmental pollution not only economically but also environmental friendly manner. Industries involved in seawater desalination, salt production, chemical industries such as Caustic soda, Soda ash and PVC interested to learn more on this new technology can write directly to this blog address for further information.