‘Clean Energy and Water Technologies’ is now a social enterprise based in Melbourne, Australia. The purpose of this enterprise is to introduce a zero emission technology developed and patented by Ahilan Raman, the inventor of the technology. A 25 Mw demonstration plant will be installed to show case the above technology. This platform also used as a blog will publish articles relevant to Zero emission technologies for power and Zero liquid discharge technologies for water industries.
Google analytics tag
Showing posts with label Syngas. Show all posts
Showing posts with label Syngas. Show all posts
Saturday, September 4, 2021
What future holds for energy and climate?
Energy industry is at a crossroad. It must now find a new direction to address the climate issue while to continue to supply energy to the world. The options are very clear. It can find new ways and means to genuinely address some of the mistakes of the past by inventing new methods to address the problem irrespective of the cost involved because time is not in our favour. Alternatively, one can redirect the issue using new terminologies and jargons and temporarily buy some time till finding an alternative and lasting solution to the problem. The first option will take time and cost more, and the second option may not take time and cost less. It seems most of the companies are choosing the second alternative. But how?
Renewable energy is defined as “a source of energy that is available from the nature that can be constantly replenished”. This will guarantee the sustainability. But we are used to Carbon based fuels and technologies and therefore we also need a renewable Carbon that can substitute fossil fuels so that existing technologies for power and transportation can be used. Biomass is also derived from plants and animals like fossil fuels, but it is different in terms of time scale, and it can be replenished quickly unlike fossil fuels. It is basically made up of Carbon, Hydrogen and additionally oxygen, like fossil fuels such as coal, oil and gas but free from sulphur. Therefore, one can use the same technology such as combustion, gasification and pyrolysis etc and convert a biomass into energy, chemicals and fuels while claiming them as “renewables”. It will require oxy-combustion and gasification methods and unfortunately usage of pure Oxygen will be inevitable.Therefore, both Carbon as well as Hydrogen derived from biomass becomes “Green” and “renewable”. In addition "Green Hydrogen" using renewable energy sources such as solar and wind by water electrolysis will help decarbonisation by capturing and converting CO2 emissions into a Syngas. It requires a steep fall in the cost of renewable electricity to less than $20/Mwh and Carbon emission to be taxed at least @ $250/Mt to discourage fossil industry. Once we establish green and renewable Carbon and Hydrogen then it is only a matter of generating a syngas, combination of Hydrogen and Carbon monoxide with various ratios to synthesis various chemicals including bio crude oil that leads to refineries to produce petrol, diesel and aviation fuels. We will be back into the game but with different brand called “Green and renewable”; it is "an old wine in a new bottle" Everybody is happy and politicians can now heave a sigh of relief and feel comfortable. One can also use “blue hydrogen’ as a mix to green hydrogen and synthesis various downstream chemicals such as Ammonia, urea etc.
Thus they can use them to decarbonise the fossil economy. In either way there is still an issue of CARBON EMISSION that needs to be addressed. They may claim biofuel as Carbon neutral, but it will not stop the increasing concentration of GHG into the atmosphere or climate change. Therefore Carbon tax will be inevitable. Bioenergy and renewable energy may increase the sustainability but will not address the issue of global warming and climate change. Nature does not discriminate between ‘bio-carbon’ and ‘fossil carbon’. Only “Carbon Recycling Technology” can address the problem of global warming and climate change. The simplest method will be to to collect CO2 emission from all petrol and diesel engines in a liquid form using a retrofittable device in the vehicle and convert them in a centralised facility to Syngas using renewable Hydrogen .The syngas can be converted into renewable crude using F-T reaction hat can be processed in a refinery for recycling into petrol, diesel and aviation fuel so that we can eliminate technologies such as large batteries and Fuel cells. By this way we can ensure the CO2 level in the atmosphere is stabilised and existing infrastructures are utilised. The availability of biomass for a radical change will be an issue especially in Asia where growing population requires more land for agriculture and deforestation is a common problem. Perhaps we need completely a new electricity generation technology that can "drive electrons to flow in a super conductor" and a magnetic storage using a cryogenic fluid. Unfortunately not many researchers are working in this direction.
Thursday, July 11, 2013
How to control Carbon emissions in coal-fired power plants?
Saturday, July 28, 2012
Can alternative energy combat global warming?
Thursday, July 19, 2012
Can Bio-gasification transform our world?
Wednesday, July 11, 2012
Fuelcell power using Biogas
Friday, March 9, 2012
The solar,wind and water-three keys to Energy independance
Renewable Hydrogen is the key that can provide us energy independence in the twenty first century. Fossil fuel usage will still continue for some more time because the world has already invested massively on fossil fuel infrastructures. The stacks are too high for them to switch over to renewable over night. It is the Mother Nature who provided us coal, oil and gas all these years using her manufacturing process under the earth over millions of years. But we human beings exceeded her tolerance limit by emitting greenhouse emission by our rapid growth in population and industrialisation.We failed to discover an alternate fuel in time and continued with an age old technology with all its inefficiencies. Inefficiencies breed pollution. We were keen to use the heat of combustion by burning a fossil fuel to generate electricity or drive our cars, but paid no attention to the gases released during such combustion. We learnt Thermodynamics and the relationship between heat and work, but failed to understand the consequences of gases of combustion and its impact on our environment.
There are two issues involved in burning a fossil fuel to generate electricity. The heat of combustion is an exothermic reaction and we get certain amount of heat. Then we convert this heat energy into electrical energy and the overall efficiency of such conversion is about thirty-five percent. Only thirty-five percent of the heat input energy becomes electrical energy and the remaining sixty-five percent heat along with gases of combustion are released into atmosphere. Of course part of this heat is recovered in a commercial plant, but the bulk of heat is released into the atmosphere as greenhouse gases. We failed to understand the potential of Hydrogen even though we used Hydrocarbon for several decades. We even discovered Urea, the fertilizer that caused ‘green revolution’ in agriculture, using the same Hydrogen present in the Hydrocarbon feedstock. It is time for us to make best utilization of a fossil fuel to its maximum potential when we burn each kilogram of fuel. We should burn coal not just with air but also with steam so that we can generate Hydrogen rich gas that can run a gas turbine in a combined cycle or run our cars on roads. Such a conversion will lead to a substantial increase in energy efficiency as well as in greenhouse gas emission reduction. Governments in industrialized countries should make it a mandatory to convert all their power plants to syngas generation as described above. They should also discourage new plants using fossil fuels with punitive power tariffs and encourage renewable energy projects with higher tariffs. Governments can also impose similar tariffs for transportation depending upon the fuel used such as fossil fuel or Hydrogen.
Governments should encourage renewable energy projects such as solar and wind to generate Hydrogen from water as centralized power plants and distribute DC (direct current) by rural electrification. If the country side is electrified using this system then, agriculture, business and industries can thrive in rural areas. Direct current (DC) distribution net work can be installed in rural areas and encourage people to use energy efficient appliances such as Direct current air-conditioners with energy star ratings and tariffs. Governments can bring about these changes by adopting a ‘carrot and stick ‘policy to encourage renewable and discourage fossil fuels.
Solar energy is the key from which all other forms of energy emanate such as wind, geothermal and ocean thermal energy conversion system. It is of paramount importance to increase the efficiency of renewable systems and improve energy efficiencies of appliances we use. It is simpler to use LED bulbs using a Direct current generated by Renewable Hydrogen. It is once again the Mother Nature, who can come to the rescue of human beings through solar, wind and water to generate clean energy for the twenty first century.
Energy generation and distribution is no longer a business or revenue issue but a moral and ethical issue for Governments. It is only people who can bring about such sweeping changes by electing the right Government who can care for the environment. The future generation will judge us only based on what kind of an environment we leave them behind.
Thursday, March 8, 2012
Hydrogen from Coal
Coal is an important fuel that helped industrial revolution. It is still a predominant fuel for power generation in many parts of the world. It is also an important raw material for number of chemicals and they directly compete with Hydrocarbons such as Naptha.It is abundantly available and it is cheap. We are still able to generate electricity at 5 cents per kwhr using coal. But, now we are entering into a new phase of energy generation and distribution, due to changing environmental and climatic issues of the twenty first century. We require completely a new fuel to address these issues; a fuel that has a higher heat content, which can generate more power per unit value of fuel, and yet, generates no pollution. It is a challenging job and the world is gearing up to meet these challenges. They affect the whole world because any issues concerning energy impacts each and every one of us. Many industrialized countries around the world are reluctant to sign an agreement that compels them to reduce their greenhouse emission to an acceptable level set by UN panel of scientists.
Governments such as US, China and India are reluctant to sign such an agreement because their economy and growth depends upon cheap energy, made from coal. Such an agreement will be detrimental to their progress, and the leaders of these nations are not prepared to sign such an agreement. They also understand that world cannot afford to continue to use coal as they have used in the past. It is simply unsustainable. It is a precarious situation and they need to carefully plan their path forward. On one hand, they need to maintain their industrial and economical growth, and on the other hand they need to reduce their emissions and save the world, from catastrophic consequences of global warming.
A simple analysis of the fuel will indicate that Hydrogen is a potential energy source for the future. It has energy content at least five times more than a coal for a unit value. Coal has an average heat content of 5000 kcal /kg while Hydrogen has an average heat content of 39,000 kcal/kg. Coal has a number of impurities such as ash, sulfur, phosphorous, other than carbon. Burning coal will emit greenhouse gases with toxic fumes that have to be removed. Therefore, these industrialized countries are now looking ways to generate Hydrogen from coal; that too at a cost which will be comparable to other current fuels such as natural gas. It is not an easy task because natural gas is formed by Mother Nature over several hundred thousand years. It is readily available and there is no manufacturing cost except processing cost. We are used to free energy from Mother Nature. This is the crux of the issue.
Hydrogen is the most abundantly available element on earth; yet it is not available in a free form. It is available as a compound, for example, joined with oxygen forming water H2O molecule; or joined with Carbon forming Methane CH4 molecule.This Hydrogen should be separated in a free form, and this separation requires energy. How can coal, which is just a Carbon, generate Hydrogen? It requires an addition of water in the form of steam. When coal is gasified with air and steam, a mixture of Hydrogen and Carbon dioxide is generated, known as Syngas (synthesis gas).
2C + H2O+O2 ------- 2H2 +2 CO2
The syngas is separated into Hydrogen and carbon dioxide using various methods using their difference in densities. The Hydrogen can be stored under pressure for further use. Research work is currently under way to capture carbon dioxide for sequestering. Carbon sequestration is a method of capturing carbon dioxide and storing it in a place where it cannot enter the atmosphere. But the technical feasibility and economic viability of such a system is yet to be established.
Carbon sequestration is a new concept and the cost of sequestration can potentially increase the cost of energy derived from Hydrogen despite the fact, Hydrogen has energy content five times more the carbon. However, there is no quick fix for our energy problems, and we have to reconcile to the fact that the energy cost will increase in the future but eventually reduce the greenhouse emissions. These developed countries should at least disclose to the rest of the world, how they plan to reduce their emissions and their action plans; such disclosure should be subject to inspection by UN panel. In the absence of any concrete mechanism, it will be impossible to stop the global warming in the stipulated time frame considering the fact that a number of coal/oil/gas fired power plants are already under implementation.
Wednesday, March 7, 2012
All roads lead to Hydrogen
We have discussed about the formation of fossil fuel as part of carbon cycle. It takes several million years before the carbon from the plants and animals turn into fossil fuels due to chemical reactions under higher pressure and temperature. The fossil fuels include solid coal, liquid oil and gaseous Hydrocarbons such as crude oil and natural gas. The natural gas forms the top layer due to its lightness. Natural gas is also the result of anaerobic reaction by microorganism in the absence of air converting organic matter under the earth into a gas. The gas during exploration comes with great pressure to be transported across several kilometers. We are actually duplicating this process to generate Biogas from our food and agriculture wastes and other organic matters. The end product is a mixture of methane and carbon dioxide. During oil and gas exploration we get methane and carbon dioxide and other gases such as Hydrogen sulfide depending upon the location of the oil field. That is why Sulfur and other products such as Mercaptnans are present in crude oil and natural gas. When these fossil fuels are burnt the gaseous combustion products contain sulfur dioxide and oxide of nitrogen along with oxides of carbon. Air is normally used for combustion which is a mixture of Nitrogen and oxygen in the ration of 71:21,therefore, the combustion products invariably consist of oxides of nitrogen.
We are so addicted to oil and we are even trying to convert natural gas into oil, similar to gasoline using GTL (gas to oil) process. However all these combustion processes can be reacted with steam to form synthesis gas, a precursor for liquid Hydrocarbon. It is quite obvious that water in the form of steam is a key component in future energy mixes because that is how one can introduce a Hydrogen molecule in the reaction process. Hydrogen in the form of water is the key. Even if we can successfully steam reform natural gas to get Hydrogen we still have problems deal thing with traces of sulfur and mercaptans, potential poison for catalyst in PEM (Proton exchange membrane) Fuelcells.The idea is to generate Hydrogen using a carbonaceous source such as fossil fuel for simple reasons. It is abundantly available but it emits greenhouse gases; but when you introduce Hydrogen into the mix then there is a good possibility of reducing greenhouse emission, even though we still use fossil fuels. Secondly, we are cautious to handle pure Hydrogen due to its explosive nature and the best available option is to mix Hydrogen with combustion products of fossil fuels. The result is the formation of Syngas.
Syngas is an important intermediary that will lead us to the Hydrogen economy of the futue.The syngas can be generated by various methods as long as we have an organic source and water (steam) source. In fact all food and agriculture waste can be converted into syngas either using a biological process or by gasification process. Both will lead to formation of Methane or syngas.
Syngas is a mixture of hydrogen with carbon dioxide formed in the following sequences, starting with carbon ,air and steam.
2C + O2-------- 2 CO,
2CO + 2H2O---------2H2 +2 CO2
The carbon source can be any organic source such as coal, coke, wood etc.As you can see in the reaction, the quantity of carbon source is equally important to generate Hydrogen. One can say that Syngas is a match maker between fossil economy of the past and Hydrogen economy of the future. It is a very important chemical reaction that will change the future energy scene in the world.
That is why many counties like US and Australia and in Europe who have considerable coal deposits are now trying to generate Hydrogen from coal. Once coal is converted into a gas such as syngas then they are one step closer to separate Hydrogen from syngas.Number of companies and Research organizations around the world are trying to develop an efficient and economical method of generating Hydrogen from coal. They have to find suitable conditions to generate higher yield of Hydrogen from syngas and then find an efficient system to separate Hydrogen from carbon dioxide. As I have mentioned earlier, the purity of Hydrogen is important especially when we use coal as the basic material because it contains number of impurities to be removed before converting into a syngas.
As we can see, all energy roads are now leading to Hydrogen as the ultimate clean fuel of the future. When the demand for Hydrogen increase, the demand for water too will increase because it is the direct source of Hydrogen. Energy and water are two side of the same coin as I have mentioned earlier in the past.
Subscribe to:
Posts (Atom)