Google analytics tag

Showing posts with label Carbon pollution. Show all posts
Showing posts with label Carbon pollution. Show all posts

Friday, February 24, 2017

Super critical CO2 power cycle with zero Carbon emission – a possibility.


There is likely to be a dramatic change in energy landscape with introduction of super critical CO2 power cycle. It not only increases the power efficiency, reduces the foot print considerably, utilizes part of CO2 emission internally in the form of super critical fluid and open a new path to eliminate Carbon emission completely (zero Carbon emission). It also reduces the water consumption in power generation unlike current conventional Rankine cycle power plants. We will soon be able to continue to generate base load power using fossil fuels with zero carbon emission. Unlike Carbon capture and sequestration already tried unsuccessfully in many parts of the world, Carbon capture and recycle will open a new chapter in the history of power generation. By capturing carbon in a solid form with potential industrial applications such a possibility is now within our reach. It means utilization of existing fossil fuel based power generation infrastructure without any Carbon emission and continue to generate continuous power to meet the increasing demand at a reasonable cost. The current focus on renewable energy will continue but until a practical and viable energy and mature storage technology is developed the renewable energy will have uncertainties. Whatever may be the case the overall cost of energy is likely to go up. Introduction of Oxy combustion in natural gas turbine has eliminated the oxides of Nitrogen from flue gas thus facilitating separation of CO2 from water and recycling water vapour into combustion process. The condensate from gas turbine is a by-product. Despite the usage of CO2 in the form of super critical fluid there is still an excess CO2 to be disposed of. A conceptual design to capture CO2 and convert them into SNG while generating additional power using the superheated steam obtained as a by-product of methanation has created a new opportunity to achieve zero carbon emission. It is an exciting development and our company is now in an advanced stage of developing and commercializing such a technology. Our new reformation process of natural gas using the captured CO2 and steam allows to precipitate Carbon in a solid form. The chemistry of the process can be explained by the following final methanation process using a proprietary catalyst involving few steps. 3CH4 +CO2 +H2O ----> 2CH4 + 3 H2O + 2 C which will take a final form as follows: CH4 + CO2 ------>
2H2O + 2C The superheated steam generated in the process can be exported to generate additional power while the condensate water can be exported and recycled. By using an excess of natural gas the captured CO2 is converted into SNG (synthetic natural gas) which can be recycled into the gas turbine thus achieving a zero-carbon emission while continuing to generate base load power. Such a technology can easily be integrated with other sources of energy such as solar, biomass, waste heat and nuclear.

Monday, August 25, 2014

How sustainable is our sustainability?


Sustainability can be defined as the ability to meet present needs without disturbing Nature’s equilibrium by a holistic approach while not compromising the ability of the future generation to continue to meet their needs. Holistic is “Characterized by the belief that the parts of something are intimately interconnected and explicable only by reference to the whole” (Wikipedia). Mathematically and scientifically any exponential growth or consumption will not be sustainable and such growth will eventually be curtailed by forces of Nature. Unfortunately current models of sustainability do not take a holistic approach but focus only on a continuous growth or expansion to meet the demands of the growing human population thus disturbing the Nature’s equilibrium. The holistic approach is essential because our world is interconnected and any isolated growth or development in one part of the world will affect the other part of the world. Such a growth is counter-productive to human civilization as a whole. At the same time Nature’s equilibrium is critical for the survival of humanity and science should take into account this critical issue while developing solutions to problems. Otherwise such a solution will not be sustainable in the long run. Nature maintains a perfect equilibrium (dynamic equilibrium) while maintaining reversibility. Both are intricately linked. If the equilibrium is not maintained then it becomes an irreversible process and the entropy of such a system will only increase according to the second law of thermodynamics. The order will become disorder or lead to chaos. Moreover any human interference to nature’s irreversibility and equilibrium by human beings will require energy. Any energy generation process within the system will not be holistic and therefore will not be sustainable. For example, reverse osmosis (RO) is a major industrial process currently used to desalinate sea water/brackish water to potable water. This process is reversing the Nature’s osmotic process by applying a counter pressure over and above the osmotic pressure of the saline water using high pressure pump. This requires energy in the form of electrical energy or thermal energy in the case of distillation. When such energy is generated by burning fossil fuel then the entropy increases because combustion of fossil fuel is an irreversible process. It is clearly not sustainable. Energy is directly connected with economic growth of the world, but Governments and industries failed to adopt a holistic approach while generating energy by simply focusing only on economic growth. The fossil fuel power generation has resulted in the accumulation of GHG in the atmosphere and in the ocean changing the climate. Power generation by nuclear plant (Fukushima) has spilled radiation into the ocean and has crossed the Pacific Ocean to shores of North America. These are irreversible changes. The human and economic costs from such pollution will easily dwarf the ‘the economic growth’ of the world. It is not holistic because the emissions caused by one country affects the whole world; then it becomes the right of an individual to object to such pollution and it is the obligation of the Governments, United Nations and the industries to protect individuals from such pollution. Right now all these agencies are helplessly watching the deteriorating situation because they do not have the solution or means to reverse the situation whether it is an advanced country or a poor country; we always measure growth only by income and not by the quality of air we breathe in or water we drink or the environment we live in. The demand for energy and water are constantly increasing all over the world; and we are trying to meet these demands by expanding existing power plants or by setting up new plants. When we generate power using fossil fuel the heat energy is converted into electrical energy and the products of combustion are let out into the atmosphere in the form of CO2 and Oxides of Nitrogen. It is an irreversible process and we cannot recover back the fossil fuel already burnt. Similarly the electricity generated once used to do some useful work such as lighting or running a motor etc cannot be recovered back. The process of electricity generation as well as usage of electricity is irreversible. Similarly when it rains the water percolates into the ground dissolving all the minerals, sometimes excessively in some places making it unsuitable to drink or irrigate. This process can be reversed but it again requires energy. Both the above processes are irreversible and thermodynamically they will increase the entropy of the system. Any energy generation process will have cost implications and therefore irreversibility and entropy are directly linked with economics. Fortunately renewable energy sources offer hope to humanity. Even though the entropy is increased due to its irreversible nature there is no depletion of energy (sun shines everyday). Only Nature can come to human rescue to our sustainability. Science and powerful economies cannot guarantee sustainability irrespective of the size of the budget. There is a myth that billions of dollars can reverse the irreversibility with no consequences. It raises question on the very basis of science because science depends on “observation and reproduciability” as we know. The biggest question is: “Who is the Observer and what is observed”? When sages of the East such as Ramana Maharishi raises this question, the Science has clearly no answer and the world is blindly and inevitably following the West to the point of no return. .

Friday, March 21, 2014

It is time to switch over from Carbon to Hydrocarbon


When Carbon emission is high and the globe is warming due to such emissions then the simple and immediate solution to address this issue is to convert Carbon into Hydrocarbon, and the simplest Hydrocarbon is Methane (CH4).By simply introducing Hydrogen atom into Carbon atom the entire fuel property changes. For example the heating value of coal is only 5000-6500 kcal/kg at the maximum while the heating value of Methane (natural gas) increases to 9500 kcal/m3 by the above conversion. It means the same power generated by coal can be generated by using almost half the quantity of natural gas. Converting Carbon into substituted natural gas (SNG) is one way of addressing climate change in a short span of time. By switching over to SNG from coal will reduce the CO2 emission almost by 50%. Global warming due to GHG emission has become a serious environmental issue in recent times and more and more investments are made on renewable energy projects such as solar and wind etc. In spite of the major thrust on renewable energy projects the main source of power is still generated around the world using fossil fuel especially Coal due to its abundance and low cost. Moreover the investment already made on fossil fuel infrastructures are too big to be ignored and investment required to substitute coal-fired power plants by renewable energy are too large and gestation periods are too long to maintain the current electricity demand and to meet the future demands. The cost of renewable energy also is high and there is great resistance by consumers to switch over to renewable energy. Many Governments are reluctant to subsidize renewable energy due to their financial constraints. That is why countries like China which is growing at the rate of more than 8% pa are trying to decrease the ‘Carbon intensity’ rather than closing down the coal–fired power plants by setting up SNG (synthetic natural gas) plants by gasification of coal . This will reduce their Carbon emissions almost by 50% surpassing all other countries around the world in short span of time, thus meeting their emission targets agreed in “Kyoto protocol”. They can also meet the increasing electricity demand by using “syngas” generated by coal gasification plants, while reducing the Carbon pollution. They will also be able to produce Diesel and Gasoline from coal similar to the “SESOL” plant in South Africa which is already operating successfully for the past 50 years. “Leveraging Natural Gas to Reduce Greenhouse Gas Emissions” – a summary report by Center for Energy and Climate Solutions (C2ES) have highlighted the following in their report. “Recent technological advances have unleashed a boom in U.S. natural gas production, with expanded supplies and substantially lower prices projected well into the future. Because combusting natural gas yields fewer greenhouse gas emissions than coal or petroleum, the expanded use of natural gas offers significant opportunities to help address global climate change. The substitution of gas for coal in the power sector, for example, has contributed to a recent decline in U.S. greenhouse gas emissions. Natural gas, however, is not carbon-free. Apart from the emissions released by its combustion, natural gas is composed primarily of methane (CH4), a potent greenhouse gas, and the direct release of methane during production, transmission, and distribution may offset some of the potential climate benefits of its expanded use across the economy. This report explores the opportunities and challenges in leveraging the natural gas boom to achieve further reductions in U.S. greenhouse gas emissions. Examining the implications of expanded use in key sectors of the economy, it recommends policies and actions needed to maximize climate benefits of natural gas use in power generation, buildings, manufacturing, and transportation. More broadly, the report draws the following conclusions: •The expanded use of natural gas—as a replacement for coal and petroleum—can help our efforts to reduce greenhouse gas emissions in the near- to mid-term, even as the economy grows. In 2013, energy sector emissions are at the lowest levels since 1994, in part because of the substitution of natural gas for other fossil fuels, particularly coal. Total U.S. emissions are not expected to reach 2005 levels again until sometime after 2040. • Substitution of natural gas for other fossil fuels cannot be the sole basis for long-term U.S. efforts to address climate change because natural gas is a fossil fuel and its combustion emits greenhouse gases. To avoid dangerous climate change, greater reductions will be necessary than natural gas alone can provide. Ensuring that low-carbon investment dramatically expands must be a priority. Zero-emission sources of energy, such as wind, nuclear and solar, are critical, as are the use of carbon capture-and-storage technologies at fossil fuel plants and continued improvements in energy efficiency. • Along with substituting natural gas for other fossil fuels, direct releases of methane into the atmosphere must be minimized. It is important to better understand and more accurately measure the greenhouse gas emissions from natural gas production and use in order to achieve emissions reductions along the entire natural gas value chain.” Countries like India should emulate the Chinese model and become self-sufficient in meeting their growing energy demand without relying completely on imported Petroleum products. Import of petroleum products is the single largest foreign exchange drain for India, restricting their economic growth to less than 5%. Countries that rely completely on coal-fired power plants can set up coal hydro-gasification and gasification plants to reduce their Carbon emissions in the immediate future while setting up renewable energy projects as a long-term solution. Transiting Carbon economy into Hydrogen economy is a bumpy road and it will not be easy to achieve in a short span of time. The logical path for such transition will be to switch coal based power generation into gas based power generation for the following reasons. The largest Carbon emissions are from power generation and transportation. Transportation industry is already going through a transition from fossil fuel to Hydrogen. More future cars will be based either on Fuel cell or Electric and in both cases the fuel is the critical issue. Battery technology also will be an issue for Electric cars. It is more practical to generate Hydrogen from natural gas and to set up Hydrogen fuel stations than generating Hydrogen from solar powered water electrolysis. With improvement on Fuel cell technology it is more likely that PEM Fuel cell may be able to operate on Hydrogen derived from natural gas that is completely free from any Sulphur compounds. Even for Electric cars, natural gas will play an important role as a fuel for power generation and distribution in the near future as we transit from Carbon economy to full fledged Hydrogen economy. Countries like India with highest economic growth will have to be pragmatic by setting up more SNG plants with indigenous coal than depending on imported LNG. India has only two LNG terminals currently in operation but do not have gas transmission infrastructure. With increasing demand for natural gas from all over the world and lack of LNG receiving terminals, India will have to face a serious fuel and power shortage in the future. By installing more coal gasification and SNG plants with down-stream products like like Diesel and petrol, India can overcome the fuel and power shortage. In fact India set up the first coal gasification and Ammonia and Urea plant in Neyveli (Neyveli Lignite Corporation) way back in Fifties after her independence and it is time to visit the past. Renewable energy is certainly the long term solution for energy demand but we have to consider the amount of GHG emission associated with production PV solar panels, wind turbines and batteries. There is no easy fix to reduce GHG emission in short span of time but switching Carbon to hydrocarbon will certainly reduce the emissions scientists are advocating and water (steam) is the key to introduce such Hydrogen atom into the Carbon atom. That is why we always believe “Water and Energy are two sides of the same coin” and renewable Hydrogen will be the key to our future energy. President Obama's recent announcement of Carbon reduction plan by coal-fired power plants in USA is a bold step in the right direction.A more ambitious plan may be required to avoid catastrophic climate change that might cost billions of dollar in health related issues and on rebuilding damaged infrastructure. For more information on the above topic please refer to the following link: Source: Harvard University Link: Coal to Natural gas Fuel switching and Carbon dioxide (CO2) emission reduction. Date: Apr 2011. Author: Jackson Salovaara.

Thursday, July 11, 2013

How to control Carbon emissions in coal-fired power plants?


“Over two-thirds of today’s proven reserves of fossil fuels need to still be in the ground in 2050 in order to prevent catastrophic levels of climate change” – a warning by scientists. There is a great deal of debate on climate change due to man-made Carbon emissions and how to control it without any further escalation. The first obvious option will be to completely stop the usage of fossil fuel with immediate effect. But it is practically not feasible unless there is an alternative Non-Carbon fuel readily available to substitute fossil fuels. The second option will be to capture carbon emission and bury them under ground by CCS (Carbon capture and sequestration) method. But this concept is still not proven commercially and there are still currently many uncertainties with this technology, the cost involved and environmental implications etc.The third option will be not to use fresh fossil fuel for combustion or capture and bury the Carbon emissions but convert the Carbon emissions into a synthetic hydrocarbon fuel such as synthetic natural gas (SNG) and recycle them. By this way the level of existing Carbon emission can be maintained at current levels without any further escalation. At least the Carbon emission levels can be reduced substantially and maintained at lower levels to mitigate climate changes. It is technically feasible to implement the third option but it has to be implemented with great urgency. One way of converting Carbon emission is to capture and purify them using conventional methods and then react with Hydrogen to produce synthetic natural gas (SNG) CO2 + 4 H2 ----------> CH4 + 2 H2O The same process will be used by NASA to eliminate carbon built-up in the flights by crew members during their long voyage into the space and also to survive in places like Mars where the atmosphere is predominantly carbon dioxide. But we need Hydrogen which is renewable so that the above process can be sustained in the future .Currently the cost of Hydrogen production using renewal energy sources are expensive due to high initial investment and the large energy consumption. We have now developed a new process to generate syngas using simple coal, which is predominantly Hydrogen to be used as a Carbon sink to convert Carbon emissions into synthetic natural gas (SNG). The same Hydrogen rich syngas can be directly used to generate power using gas turbine in a simple or combined cycle mode. The Carbon emission from the gas turbine can be converted into SNG (synthetic natural gas) using surplus Hydrogen-rich syngas. The SNG thus produced can be distributed for CHP (combined heat and power) applications so that the Carbon emission can be controlled or distributed. By implementing the above process one should be able to maintain Carbon at specific level in the atmosphere. Existing coal fired power plants can retrofit this technology so that they will be able to reduce their Carbon emissions substantially; they can also produce SNG as a by-product using their Carbon emissions and achieve zero Carbon emission at their site while generating revenue by sale of SNG. Coal is the cheapest and widely used fossil fuel for power generation all over the world. Therefore it will be a win situation for everyone to use coal and also to reduce Carbon emissions that can address the problems of climate change. Meanwhile research is going on to generate renewable Hydrogen cheaply directly from water using various technologies. But we believe we are still far away from achieving this goal and we require immediate solution to address our climate change problems. Recently BASF made a press release :www.basf.com/group/pressrelease/P-13-351‎ claiming a break-through technology to generate Hydrogen from natural gas without any CO2 emissions.

Tuesday, July 2, 2013

Australian Carbon tax shows the world a way to a cleaner future

Taxing Carbon pollution is already paying the dividends according to the National Energy Market of Australia. Such a tax will encourage fossil fuel fired power plants to rethink the way they generate power and emit the Carbon into the atmosphere. For example, black and brown coal power plants can switch over to gasification technology from their existing combustion technology which can reduce their Carbon emissions. Coal fired power plants can switch over to gas fired power plants and reduce their emissions by almost 50%. By employing CHP (combined heat and power) the gas fired power plants can reduce their Carbon emission as much as 75%. Taxing Carbon will encourage efficiency and reduce pollution. Australian Carbon tax is a good example which has clearly shown the way to reduce Carbon pollution and to encourage renewable energy. The following is an excerpt from Climate Institute of Australia: “Emissions from electricity are falling: Annual carbon emissions from the National Electricity Market fell by over 12 million tonnes (CO2-e) between June 2012 and May 2013. They fell by only around 1.5 million tonnes over the previous twelve-month period. Carbon pollution per megawatt-hour has also fallen: from 0.86 to 0.81 tonnes per unit of output, or a little over 5 per cent. According to the National Energy Market (NEM) data released in June this year, Australia’s electricity supply is becoming cleaner: electricity from renewable sources has risen by nearly 23 per cent and natural gas power by more than 5 per cent since the previous twelve months to May 2012. At the same time, the use of brown coal has fallen by about 12 per cent and black coal by more than 4 per cent. Generation by Australia’s seven biggest coal-fired power stations has fallen by over 13 per cent. Structural changes driven by the high Australian dollar, rising electricity prices, introduction of energy efficiency measures, increased home installations of solar photovoltaic (PV), and the Renewable Energy Target are key drivers of this change. However, early indications are that the carbon price is playing a supporting role by make renewable energy even more competitive compared to fossil-fuel generation. As the price becomes more embedded in longer-term investment decisions the role of the carbon price will increase. Electricity price-rises—perception and reality: For businesses and consumers alike, electricity prices have been rising sharply for several years—more than 40 per cent in the last few years. On average, more than half of this rise is the result of network upgrades, including the replacement of aging infrastructure. Despite the recent increases, however, when adjusted for inflation, electricity prices are about the same as they were a generation ago. Yet, according to the Australian Industry Group, there is still a false perception amongst many in business that the carbon price is the biggest contributor to rising prices. The biggest of [the] …pressures [on prices] is the rising cost of electricity networks, the poles and wires that deliver power. The high profile of the carbon tax appears to have led to some over-estimation by businesses of the specific impact of the carbon tax on energy prices… For residential retail customers, the carbon price accounted for around 9 per cent of power bills in 2012–13, or between about $2 and $4 extra per week, depending upon the state or territory. It should be noted that the carbon price is unlikely to materially increase bills any further in the next few years, although prices will continue to rise for reasons that have nothing to do with the price on pollution. An upshot of recent price rises—and scare-campaigning by some in politics and industry—may be the spread of a more energy-efficient ethos: in 2012, approximately 90 per cent of Australians did something to minimize their power bills, according to the Australian Bureau of Statistics. Such changes in consumer and business behavior are likely to help cushion the impact of any future price-rises. The cost of living has not skyrocketed: Before 1 July, 2013, the Australian Treasury predicted that the carbon laws would add 0.7 per cent to the Consumer Price Index, while CSIRO and global consulting firm AECOM conservatively predicted inflation at 0.6 per cent, given 100 per cent cost pass-through. This was part of a study for The Climate Institute, Choice, and the Australian Council of Social Service (ACOSS). The impact of the carbon price on particular prices is barely discernible. Indeed, the ABS has said it is unable to discern any impact against normal variability in consumer prices. One estimate, by Westpac Economics, suggests the reality is that the carbon price has added just 0.4 per cent to the Consumer Price Index. For the vast majority of Australian households, the increase their cost of living has been very small and this will be covered by the assistance Package associated with the scheme. According to independent analysis, for a low-income family of four, for instance, assistance is, on average, around $31 per week; for a single pensioner, it’s a little over $19 and for a middle-income family of four, it’s about $13. Federal assistance was projected to leave the large majority of households better off. Looking forward The hyperbole that characterized the twelve months to 1 July 2013 has largely given way to reality. The carbon laws have not undermined Australia’s economic performance nor have they raised the cost of living substantially. What is more, the package of carbon laws is contributing to emissions from electricity falling, the energy mix shifting in favor of renewable and cleaner fuels, and energy use is becoming more efficient. Low-carbon investment is flowing—the carbon price at work using money raised by the price on pollution, over six years, $946 million is committed to maintain stocks of carbon in bush land, and to enhance the resilience of natural systems to climate change. In the first round of the Biodiversity Fund, around $270 million has been allocated to more than 300 landscape rehabilitation and restoration projects around the country. Hundreds of firms are investing in energy efficiency, cleaner manufacturing, and innovative renewable energy projects, such as geothermal and solar-thermal. Many have received grants drawn from monies raised by the carbon price. Federal clean technology funding programs total $1,200 million over the next few years. Already, companies with household names like Arnott’s, Bundaberg Sugar, Bega Cheese, CSR, and Coca-Cola, together with many others, have received public grants leveraging considerably more private investment. Meanwhile, the Carbon Farming Initiative is seeing the big end of town investing new money in regional and rural communities. Between them, BP Australia, CS Energy, CSR, and Energy Australia have purchased more than 322,000 Australian carbon Credit Units, representing more than $7 million in low-carbon projects, such as sustainable forestry, cleaner livestock production, better landfill operations, and savannah management. Overall, Australian Carbon Units and ACCUs purchased by fossil-fuel power stations were worth $39 million in June 2013.” President Obama has recently outlined his policy on climate change and Carbon pollution reduction measures.US and the rest of the world can learn lessons from Australian experience on how low Carbon economy can be achieved without compromising an economic and industrial growth. In fact low Carbon economy can create millions of jobs and a sustainable future. The same polluting Carbon can become a source of cheap Hydrogen by innovative gasification technology. Innovation is the key to achieve a sustainable energy mix between renewable and fossil fuels.

Thursday, April 18, 2013

Water and Energy are two sides of the same coin

Water and energy are two critical issues that will determine the future of humanity on the planet earth. They determine the security of a nation and that is why there is an increasing competition among nations to achieve self-sufficiency in fresh water and clean energy. But these issues are global issues and we need collective global solutions. In a globalised world the carbon emission of one nation or the effluent discharged into the sea from a desalination plant changes the climate of the planet and affects the entire humanity. It is not just a problem of one nation but a problem of the world. The rich and powerful nations should not pollute the earth, air and sea indiscriminately, hoping to achieve self-sufficiency for themselves at the cost of other nations. It is very short sighted policy. Such policies are doomed to fail over a period of time. Next generation will pay the price for such policies. Industrialised countries and oil rich countries should spend their resources on research and development than on weapons and invent new and innovative solutions to address some of the global problems such as energy and water. With increasing population and industrialisation the demand for energy and water is increasing exponentially. But the resources are finite. It is absolutely essential that we conserve them, use them efficiently and recycle them wherever possible so that humanity can survive with dignity and in peace. It is possible only by innovation that follows ‘Nature’s path. The earth’s climate is changing rapidly with unpredictable consequences .Many of us are witnessing for the first time in our lives unusual weather patterns such as draughts, flash flooding, unprecedented snow falls, bush fires, disease and deaths. Although we consider them as natural phenomena there is an increasing intensity and frequency that tells us a different story. They are human induced and we human beings cause these unprecedented events. When scientists point out human beings cause the globe to warm there were scepticism. We never believed we were capable of changing the entire weather system of the globe. We underestimate our actions. By simply discharging effluent from our desalination plants into the sea, can we change the salinity of the ocean or by burning coal can we change the climate of the world? The answer is “Yes” according to science. Small and incremental pollution we cause to our air and water in everyday life have dramatic effects because we disturb the equilibrium of the Nature. In order to restore the equilibrium, Nature is forced to act by changing the climate whether we like it or not. Nature always maintains“equilibrium” that maintains perfect balance and harmony in the world. If any slight changes are made in the equilibrium by human beings then Nature will make sure such changes are countered by a corresponding change that will restore the equilibrium. This is a natural phenomenon. The changes we cause may be small or incremental but the cumulative effect of such changes spanning hundreds of years will affect the equilibrium dramatically. We depend on fossil fuels for our energy needs. These fossils were buried by Nature millions of years ago. But we dig deep into the earth, bring them to surface and use them to generate power, run our cars and heat our homes. Our appetite for fossil fuels increased exponentially as our population grew. We emitted Carbon into the atmosphere from burning fossil fuels for hundreds of years without many consequences. But the emissions have reached a limit that causes a shift in Nature’s equilibrium and Nature will certainly act to counter this shift and the consequences are changes in our weather system that we are currently witnessing. The only way to curtail further Carbon emission into the atmosphere is to capture the current Carbon emissions and convert them into a fuel so that we can recycle them for further power generations without adding fresh fossil fuel into the system while meeting our energy demands. We can convert Carbon emissions into a synthetic natural gas (SNG) by using Hydrogen derived from water. That is why I always believe ‘Water and energy are two sides of the same coin’. But cost of Hydrogen generation from water will be high and that is the price we will have to pay to compensate the changing climate. Sooner we do better will be the outcome for the world. In other word the cost of energy will certainly go up whether we price the Carbon by way of trading or impose Carbon tax or pay incentives for renewable energy or spend several billions of dollars for an innovative technology. There is no short cut. This is the reality of the situation. It will be very difficult for politicians to sell this concept to the public especially during election times but they will have no choice. Similarly serious shortage for fresh water in many parts of the world will force nations to desalinate seawater to meet their growing demand. Saudi Arabia one of the largest producers of desalinated water in the world is still planning for the highest capacity of 600,000m3/day. This plant will discharge almost 600,000 m3/day of effluent back into the sea with more than double the salinity of seawater. Over a period of time the salinity of seawater in the Gulf region has increased to almost 40% higher than it was a decade ago. What it means is their recovery of fresh water by desalination will decrease or their energy requirement will further increase. Any increase in salinity will further increase the fossil fuel consumption (which they have in plenty) will increase the Carbon emission. It is a vicious cycle and the entire world will have to pay the price for such consequences. Small island nations in pacific will bear the brunt of such consequences by inundation of seawater or they will simply disappear into the vast ocean. Recent study by NASA has clearly demonstrated the relationship between the increasing salinity of seawater and the climate change. According to Amber Jenkins Global Climate Change Jet Propulsion Laboratory: “We know that average sea levels have risen over the past century, and that global warming is to blame. But what is climate change doing to the saltiness, or salinity, of our oceans? This is an important question because big shifts in salinity could be a warning that more severe droughts and floods are on their way, or even that global warming is speeding up... Now, new research coming out of the United Kingdom (U.K.) suggests that the amount of salt in seawater is varying in direct response to man-made climate change. Working with colleagues to sift through data collected over the past 50 years, Peter Stott, head of climate monitoring and attribution at the Met Office in Exeter, England, studied whether or not human-induced climate change could be responsible for rises in salinity that have been recorded in the subtropical regions of the Atlantic Ocean, areas at latitudes immediately north and south of Earth’s tropics. By comparing the data to climate models that correct for naturally occurring salinity variations in the ocean, Stott has found that man-made global warming -- over and above any possible natural sources of global warming, such as carbon dioxide given off by volcanoes or increases in the heat output of the sun -- may be responsible for making parts of the North Atlantic Ocean more salty. Salinity levels are important for two reasons. First, along with temperature, they directly affect seawater density (salty water is denser than freshwater) and therefore the circulation of ocean currents from the tropics to the poles. These currents control how heat is carried within the oceans and ultimately regulate the world’s climate. Second, sea surface salinity is intimately linked to Earth’s overall water cycle and to how much freshwater leaves and enters the oceans through evaporation and precipitation. Measuring salinity is one way to probe the water cycle in greater detail.” It is absolutely clear that the way we generate power from fossil fuels and the water we generate from desalination of seawater cannot be continued as business as usual but requires an innovation. New technologies to generate power without emitting Carbon into the atmosphere and generating fresh water from seawater without dumping the highly saline effluent back into the sea will determine the future of our planet. Discharge of concentrated brine into sea will wipe out the entire fish population in the region. The consequences are dire. Oil rich countries should spend on Research and Developments and find innovative ways of desalinating seawater with zero discharge of effluent instead of investing massively on decades old technologies and changing the chemistry of the ocean and the climate forever.

Tuesday, April 2, 2013

How to put “Carbon genie” back into the bottle?

The Carbon emission in the atmosphere is steadily increasing. The latest statistics indicates that it has reached a staggering 35.6 billion tons/yr, a 2.6% increase over the previous year, thanks to the growth of China. It is becoming evident that there is a relationship between the Carbon emission, global warming and erratic weather patterns around the world. According to ‘The Guardian’, “The chances of the world holding temperature rise to 2C – the level of global warming considered "safe" by scientists – appear to be fading fast with US scientists reporting the second-greatest annual rise in CO2emissions in 2012. Carbon dioxide levels measured at Mauna Loa observatory in Hawaii jumped by 2.67 parts per million (ppm) in 2012 to 395ppm, said Pieter Tans, who leads the greenhouse gas measurement team for the US National Oceanic and Atmospheric Administration (NOAA). The record was an increase of 2.93ppm in 1998. The jump comes as a study published in Science on Thursday looking at global surface temperatures for the past 1,500 years warned that "recent warming is unprecedented", prompting UN climate chief, Christiana Figures, to say that "staggering global temps show urgent need to act. Rapid climate change must be countered with accelerated action." Tans told the Associated Press the major factor was an increase in fossil fuel use. "It's just a testament to human influence being dominant", he said. "The prospects of keeping climate change below that [two-degree goal] are fading away. Preliminary data for February 2013 show CO2 levels last month standing at their highest ever recorded at Manua Loa, a remote volcano in the Pacific. Last month they reached a record 396.80ppm with a jump of 3.26ppm parts per million between February 2012 and 2013. Carbon dioxide levels fluctuate seasonally, with the highest levels usually observed in April. Last year the highest level at Mauna Loa was measured at 396.18ppm. What is disturbing scientists is the acceleration of CO2concentrations in the atmosphere, which are occurring in spite of attempts by governments to restrain fossil fuel emissions. According to the observatory, the average annual rate of increase for the past 10 years has been 2.07ppm – more than double the increase in the 1960s. The average increase in CO2 levels between 1959 to the present was 1.49ppm per year. The Mauna Loa measurements coincide with a new peer-reviewed study of the pledges made by countries to reduce CO2 emissions. The Dutch government's scientific advisers show that rich countries will have to reduce emissions by 50% percent below 1990 levels by 2020 if there is to be even a medium chance of limiting warming to 2C, thus preventing some of climate change's worst impacts."The challenge we already knew was great is even more difficult", said Kelly Levin, a researcher with the World Resources Institute in Washington. "But even with an increased level of reductions necessary, it shows that a 2° goal is still attainable – if we act ambitiously and immediately." Extreme weather, which is predicted by climate scientists to occur more frequently as the atmosphere warms and CO2 levels rise, has already been seen widely in 2013. China and India have experienced their coldest winter in decades and Australia has seen a four-month long heat wave with 123 weather records broken during what scientists are calling it 'angry summer'. "We are in [getting] into new climatic territory. And when you get records being broken at that scale, you can start to see a shifting from one climate system to another. So the climate has in one sense actually changed and we are now entering a new series of climatic conditions that we just haven't seen before", said Tim Flannery, head of the Australian government's climate change commission, this week. Earlier this week the Met Office warned that the "extreme" patterns of flood and drought experienced by Britain in 2012 were likely to become more frequent. One in every five days in 2012 saw flooding but one in four days were in drought”. The biggest question now is how to put this Carbon genie back into the bottle? Renewble energy may be an answer to curtail future Carbon emissions but what about the existing coal fired power plants that constitutes 60% of the existing power generation in the world? There is no easy solution. But the “Law of conservation of mass” gives us a clue.The Carbon we dig from the earth in the form of coal, combusted into the atmosphere as Carbon dioxide may be captured and recycled back into the system in the form of a fuel.By this way, we may not require fresh coal to be mined.To achive this feat,we need Hydrogen from a renewable source.The renewable Hydrogen can be combined with Carbon dioxide caputured from the coal fired power plants to generate synthetic natural gas (SNG).The SNG generated by this method can be used for future power generation, substituting Coal and future carbon emission can be recycled in the form of SNG. This approach will open up a wide range of possibilities and potentially reduce the carbon emission to zero. Many companies round the world including DOE (Department of energy,Govt of USA) are trying to develop an economically viable method to generate Hydrogen with an estimated cost of poduction at $ 2.50 /kg of Hydrogen. One potential method is to generate Hydrogen by splitting water using a thermo-chemical process using concentrated solar therml energy developed by European Union called “Hydrosol cycle”. The method by which Hydrogen is generated should be free from any Carbon emision. To clean up 1 Kg Carbon dioxide one will require at least 0.2kg Hydrogen. For example, a 100Mw coal fired power plant emitting about 2256 Mt CO2/day will require about 451 Mt of Hydrogen/day, costing about $1,127,500 per day.It will cost roughly $500/Mt of C02 to put the ‘ Carbon genie’ back into the bottle! One can imagein the cost of cleaning up 35.6 billion tons of Carbon dioxide from the atmosphere.Only a Carbon free Hydrogen derived from water can save the world from a potential catastrophe.

Friday, August 31, 2012

Indian black out and aftermath


The largest power outage that affected 650 million people in India recently was a major news around the world. Power outage is common in many countries including industrialized countries during the times of natural disasters such as cyclones, typhoons and flooding. But the power outage that happened in India was purely man-made. It was not just an accident but a culmination of series of failures as the result of many years of negligence, incompetency and wrong policies. Supplying an uninterrupted power for a democratic country like India with 1.2 billion people with 5-8% annual economic growth, mostly run by Governments of various political parties in various states is by no means an easy task. While one can understand the complexities of the problems involved in power generation and distribution, there are certain fundamental rules that can be followed to avoid such recurrence. The supply and demand gap for power in India is increasing at an accelerated rate due to economic growth but the power generation and distribution capacity do not match this growth. Most of the power infrastructures in India are owned by Governments who control the power generation, distribution, operation and maintenance, financing power projects, supplying power generation equipments, supplying consumables, supplying fuel, transportation of fuel and revenue collection. The entire system is based on the policy of ‘socialistic democracy’, after the independence from the British, though economic liberalization and globalization is relatively a new phenomenon in India. Since every department of power infrastructure is controlled by Government, there is a lack of accountability and competition. Many private companies and foreign companies do not participate in tendering process because it is a futile exercise. Some smart multinational companies set up their manufacturing facilities in India, often in collaboration with Governments in order to get an entry into one of the largest market in the world. Indigenous Coal is the dominant fuel widely used for power generation though the quality of coal is very low, with ash content as high as 30%.The calorific value of such coal hardly exceeds 3000 kcal/kg, which means more quantity of coal is required than any other fuel to generate same amount of power. Such coal generates not only low power but also generates huge amount of ‘fly ash’ (the ash content is the coal comes out as fly ash) causing pollution and waste disposal problems. Large piles of fly ash and age old cooling towers with a large pool of stagnant water are common sights in many power plants in India. Such low cost coal does not make any economic sense when considering the amount of fly ash disposal cost and environmental damages. Thanks to research institutions that have developed methods to utilize fly ash in production of Portland cement. The indigenous low grade coal is the fuel of choice by Indian power industries, though many plants have started importing coal recently from Indonesia and South Africa. Indigenous low grade coal and cooling water from rivers and underground sources are two major pollutants in India. Water is allocated for power plants at the cost of agriculture. There is a shortage of drinking water in many cities as well as irrigation water for agriculture. Since most of the power infrastructures are owned by Governments there is a tendency to adopt populace policies such as power subsidies, free water and power for farmers, low power tariffs etc, making such projects economically unviable in the long run. Most of the State Electricity boards in India are running at a loss and such accumulated losses amount to staggering figures. The Central electricity authority regulates the power tariff. They calculate the cost of power generation based on specific fuel and fix the power tariff that companies can charge their consumers even before the plant is set up. Most of such tariffs are based on their past experience using indigenous low grade coal and transport cost which are often impractical. Such low power tariffs are not remunerative for private companies and many foreign companies do not invest in large capital intensive power projects in India for the same reason. The best option for the Governments to solve energy problems in India will be to open to foreign investments and allow latest technologies in power generation and distribution. It is up to the investing companies to decide the right type of fuel, right type of equipments, source and procurement, power technology to be adopted and finally the tariff. India has come a long way since independence and Governments should focus on Governing rather than managing and controlling infrastructure projects. The latest scam widely debated in Indian media is 'Coal scam’. It is time India moves away from fossil fuel and allow foreign investments and technologies in renewable energy projects freely without any interference. India needs large investments in building power and water infrastructures and it will be possible to attract foreign investment only by infusing confidence in investing companies. It is not just the size of the market that is to be attractive for investors but they also need a conducive, fair and friendly environment for such investment.

Monday, April 23, 2012

Carbon-free air is a Human right issue


Environment Pollution Authority EPA of US Government regulated the gas emission standards for power plants for oxides of Nitrogen and Sulfur in the past but not for GreenHouseGas (GHG) emissions into the atmosphere. However, when President Obama took over power, EPA passed ‘Clean Air Act’ to regulate the emission standards of all gases including GHG for new stationary power plants. This act projected to prevent over 230,000 early deaths in US alone by 2020 due to Carbon dioxide. According to this act, 1. Starting in January 2011, large industrial facilities that must already obtain Clean Air Act permits for non-GHGs must also include GHG requirements in these permits if these increase are newly constructed and have the potential to emit 75,000 tons per year of carbon dioxide equivalent (CO2e) or more or modify and increase GHG emissions by that amount. 2. Starting in July 2011, in addition to facilities described above, all new facilities emitting GHGs in excess of 100,000 tons of per year CO2e and facilities making changes that would increase GHG emissions by at least 75,000 tpy CO2e, and that also exceed 100/250 tons per year of GHGs on a mass basis, will be required to obtain construction permits that address GHG emissions (regardless of whether they emit enough non-GHG pollutants to require a permit for those emissions.) 3. Operating permits will be needed by all sources that emit at least 100,000 tons of GHG per year on a CO2e basis beginning in July 2011. 4. Sources less than 50,000 tons of GHGs per year on a CO2e basis will not be required to obtain permits for GHGs before 2016. (Sources: clean technica) According to Stanford scientist Mark Jacobson, there is a definite link between the Carbon dioxide and increasing deaths. While the argument continues between believers of global warming and skeptics, it clear that Carbon pollution kills people without any discrimination. Any gaseous emission into the atmosphere will eventually spread across the borders of each country and becomes a global issue. EPA in each country in the world should pass similar legislation to curb GHG emissions, at least to protect their people if not to curtail global warming. What is most surprising is some scientists still want more ‘scientific data’ to accept whether GHG causes global warming or not. One need not be a rocket scientist to conclude that chemical pollution is slowly poisoning the air, water and earth. Hundreds of chemicals that we used in the past were abandoned due to their harmful effects. For example, Asbestos,DDT,Chlorine for disinfecting drinking water, coal tar dyes, Nicotine, Refrigerants like Fluorocarbons etc to name a few. We can choose to ignore the warnings of Nature and carry on the business as usual in the name of science. But we cannot ignore people claiming their legitimate rights to live and breathe a quality air to lead a normal life. It is a human right issue. It is not an issue that can be debated only by scientific community and decided. WHO should classify ‘Quality air’ as a fundamental human right with great urgency. Governments around the world can pass ‘Clean air act’ similar to US. They may not levy carbon tax or offer new incentives to promote green energy, but regulate the indiscriminate emissions of GHG into the atmosphere, which passively kills millions of people around the world. This is nothing but ‘weapons of mass destruction’ in a passive way, but on a grander scale. When ‘passive smoking’ is a crime Carbon emission too is a crime. It is the duty of industries to incorporate carbon pollution prevention measures by scientific innovations.