Google analytics tag

Showing posts with label Climate change. Show all posts
Showing posts with label Climate change. Show all posts

Friday, October 8, 2021

Science,climate change and Nature

I previously posted an article titled, “Why climate change is irreversible, and Science is helpless?” couple of times because “Science” itself has fundamentally lost its purpose and direction. Science is no longer about pursuit of knowledge but a pursuit of wealth and fame. That is why most scientifically advanced countries are all wealthy countries focussing only on wealth creation. But such a wealth comes at the expense of social justice, environmental degradation, unsustainability and finally the very survival in our everyday life. I have always struggled with the idea that “science is the panacea of all human sufferings” even though I spent most part of my life pursuing Science. University degrees including research programs are all meant to meet the above goals of wealth creation as an underlying goal. It is purely a false identity of knowledge for materialism. If we look at the early Science up to the point of Quantum mechanics and beyond most of the Scientists including Albert Einstein did not pursue science to seek wealth and fame but for the sake of unravelling the mysteries of nature with a hope such a solution will lead to understanding of the universe. But he could not come to terms with Copenhagen interpretation of Quantum theory, arguing that “God does not play dice and there must be some underlying deterministic ‘clockwork’ running the universe and giving the appearance of probability at work in quantum systems. I still see Science struggling with the most fundamental part of creation namely ‘the light’ even after the development of quantum physics. I became disillusioned with science, and I believe Science has lost of purpose and direction. It is constantly being substituted with materialism and greed. That is why I have become increasingly vary of science and my inclination towards spiritualism grew enormously in a short span of time, especially after I had some personal experiences which were not only inexplicable but pushed me to the total acceptance of spirituality as the ultimate solution to human suffering. It is just a realization that comes after a long worldly experience. I must call it “spiritual science”. The concepts and proofs of spiritual science may not involve mathematical models, equations and soft wares etc but they are based on logics and indisputable facts. Intelligence may be substituted by emotional intelligence because emotional intelligence originates from our ‘innate feelings and emotions’ from the heart rather than ‘rational thinking ‘that originates from mind. Entropy is a scientific concept born out of observation and experience. Entropy leads from an order to chaos as time passes by. It was born out of an observation of nature. It is a sign of irreversibility, inefficiency and deterioration of quality from order to disorder. In ‘Yogic’ terms it can be termed as ‘mental modifications’ described in Sanskrit as ‘Chita virity’ by Patanjali of Yoga sutra. In order to restore order from chaos, the process must be reversed. What science is doing is moving from an order to disorder due to our ‘chiita vritty’ and the solution is to stop the modifications what Patanjali describes as ‘chitta vritty nirodha’ which is the real meaning of YOGA. There is a much more deep and subtler truth behind YOGA. YOGA is all about controlling mind to achieve peace and happiness. Modification of mind ls nothing but an entropy. Stillness of mind reverses the entropy. Mind is an entity even the most advanced science such as neurobiology and psychiatry are unable to define, and science is still groping in darkness when comes to mind. Without understanding MIND and its nature how can we use it as a tool to unravel the mysteries of nature? You cannot remove darkness with darkness but only with light. It is highly significant that light was the first creation of the universe. Light existing outside time and space is the metaphysical link between the timeless eternity that precedes our universe and the world of time, space and matter within which we live. MIND cannot exist without a body (matter). Without a body living beings cannot perceive the world. What mind perceives in the world are forms of matters. It is the mind (Sushma sarira) subtle body which perceives the world and matter. But the MIND is an unknown entity that modifies itself every second of our life leading to chaos (an entropy). Therefore, Science as we know cannot be a solution to our problem but exacerbate our problems further. That is precisely what happened to our technology of electricity generation, global warming and climate change. The solutions put forward by science to “fix the problem” too have only materialistic basis so that individuals and companies can survive and even thrive for some time based on the capital raised and cash flow it generates. Ultimately, they are bound to fail, and climate will irreversibly change wiping out bulk of the population by way of natural disasters, disease, draught, flood and war. Only Nature will fix the problem in the end. Jesus said, "Know what is in front of your face, and what is hidden from you will be disclosed to you. For there is nothing hidden that won't be revealed." What he meant was, all we perceive in the external world in the name of forms and names do not originate from body (material) but from a Divine Origin. Can there be a sight without an eye (sight)? Both the eye and the sight are universal divine or collective consciousness.

Friday, April 23, 2021

WATER AND ENERGY ARE TWO SIDES OF THE SAME COIN

 




I always believed one can create energy from water and water from energy. Ancient Hindus believed water comes from fire and fire comes from water, two fundamental building blocks out of five elements that are necessary for Creation.

Water (H2O) is made up of two atoms of Hydrogen and one atom of Oxygen. The structure itself is an absolute beauty because it contains both reductant and oxidant tied up inseparably in such a way it requires enormous energy to separate them. Individually Hydrogen forms an explosive mixture with air on combustion. People familiar with Oxy Hydrogen will know such a stoichiometric mixture of Hydrogen and Oxygen in gaseous form by water electrolysis generate a flame that can cut an iron piece but leaves water on condensation. Current methods of Electrolysis using PEM (proton exchange membrane) can not only split water into Hydrogen and Oxygen but also separates them simultaneously into two different gases. Fuel cell just reverses the above reaction by combining Hydrogen and Oxygen generating electrical power and heat as a by-product. The fundamental facts about water and energy remain the same for millennia.

We are now facing a new challenge of global warming and climate change that is supposed to be caused by the unabated emission of CO2 into the atmosphere by the combustion of fossil fuels. The world is now gearing up to achieve net-zero emission by 2050. In my opinion, it is not such a big challenge, but the world has neglected emissions for too long. The science of electricity generation using electromagnetism is far from perfect in the sense it failed to consider the emissions by combustion of fossil fuels. The simple solution is to reduce the oxides of Carbon back into Carbon so that there will be zero-emission. Unfortunately, we never used pure Oxygen for combustion but air because it is readily available and cheap to use. But it generates not only CO2 but also NOx, NO2, H2S, SO2, etc. all contributing to air pollution which is now affecting the world by way of global warming and climate change. The CO2 level in the atmosphere has now reached 415 ppm which is only part of the anthropogenic CO2 emission since the industrial revolution. About a third of it has been absorbed by the ocean thus acidifying the seawater. The pH level of the sea is slowly but steadily decreasing making it more acidic. Thanks to the enormous buffering capacity of the sea and such a change are hardly noticeable. But it will soon change the chemistry of the water. It is a complex situation with the changing chemistry of seawater due to absorption of CO2, heat, increasing salinity. Sea levels rise due to melting of glaciers, constant discharge of highly concentrated effluent discharges from seawater desalination plants and power plant cooling towers, etc.  Climate modeling in the future will be challenging.

I previously posted an article on “Zero-emission baseload power using only sun and sea”. It has attracted many viewers worldwide especially in my blog/: https://www.clean-energy-water-tech.com.

I have already filed a provisional patent application with IP Australia, and I am in the process of filing an international patent application so that I can secure an IP with a value. The technology is based on a couple of well-proven concepts and it will not be difficult to implement them commercially. A couple of multinational companies has already endorsed my process they are even willing to take part as EPC (engineering, procurement, and construction) contractors.

I am planning to seek donations and contributions from my worldwide audience by way of crowdfunding to secure an IP worldwide so that I can practically contribute my knowledge and experience to address one of the greatest challenges of global warming and climate change.

Please watch this blog and my next article will elaborate on my patented technology.

 CARBON RECYCLING TECHNOLOGY (CRT) also known as RAMANA POWER CYCLE (RPC) FOR A ZERO EMISSION BASELOAD POWER USING ONLY SUN AND SEA.

I invite everyone to contribute by way of donations to my campaign at

  https://readyfundgo.com/?post_type=ignition_product&p=52427.

The funds will be used to seek international patent for my invention as an intellectual property. It will enable me to demonstrate further the invention by installing a 25 Mw baseload power plant with zero emissions using only sun and sea. It is a small beginning for a lasting solution for a net zero emission technology. It will also help reduce ocean acidification and help marine life including corals. It will be the new beginning !

Friday, May 10, 2019

It is time UN acted on climate change


Carbon emission caused by human beings has become a major issue for our environment and future economy due to changing climate. But there are still few countries who are sceptical about the science of climate change and reluctant to act and refuse to be a part of United Nation’s action on climate change. These countries are either fossil fuel producers such as coal, oil and gas or large economies who have been traditionally depending on usage of fossil fuel for their economy and security. The transition from Carbon economy to non-Carbon economy may not be easier for them in the absence of an alternative technology that can guarantee not only complete elimination of CO2 emission but also efficiency and sustainability. There is a strong political motivation too behind such dithering and they create a fear of slowing economy and large-scale unemployment among the people in the absence of a viable alternative energy source. Therefore, United Nation has an important role to play at this critical juncture of transition to non-carbon economy and save the planet earth from imminent danger of environmental and economic collapse. UN can also stop mass extinction of species and migration of refugees for a better life. UN was successfully able to bring together 174 countries to the negotiating table during Paris climate change conference. However, they failed to reach a unanimous Agreement and announce a concrete action plan to act. They failed to articulate the ways and means of reducing or eliminating man made CO2 emissions in a stipulated time frame. They also failed to bring powerful nations such as USA to the table which made the task even harder. But this situation can be changed if UN is able to articulate a concrete Action plan which is agreeable to all the parties involved. This is possible only if UN can address all the issues involved such as the alternative technology, funding, implementing in a stipulated time frame, measuring and monitoring the progress and achieving the final goal. UN should first be able to create the same level playing field where all Countries can take part equally without any discrimination. It depends completely on focussing the type of technologies to be deployed to achieve the above goals and It should be able to set a specific date to implement such a plan. Currently renewable energy is considered as one of the alternatives along with renewable Hydrogen which can act both as an energy storage and as well as energy carrier. But renewable Energy is intermittent and energy storage has become part of the system. With our limited experience in renewable energy deployment over a decade renewable energy alone Cannot be the solution to address the issue of CO2 emissions. One must estimate the life cycle CO2 emissions of hardware used in renewable energy systems such as PV solar panels, Solar concentrators, wind turbines, storage batteries. Renewable Hydrogen generators, Fuel cells etc. Each of them has their own Carbon footprint that must be incorporated in life cycle assessment. Similarly, even fossil fuel-based power generators such as boilers, steam or gas turbines, pumps and compressors etc too have Carbon footprint that should be assessed. Carbon footprint should be assessed as fixed carbon footprint and variable carbon footprint and then these data should be used to arrive at the Carbon footprint to generate power (tons of CO2/Mwh) Once a life cycle assessment of their Carbon footprint is estimated then it will be easier to rate each technology based on their “Carbon Rating” which will be a measure of their Carbon footprint. The Carbon rating is measured and allocated “number of stars” based on Carbon footprints. Lowest emitting technology will be rated with highest number of stars while highest emitting technologies will get the lowest number of stars. Carbon rating will be a good measure to assess the technology that can be used worldwide. Countries who are reluctant to reduce CO2 emissions will be discouraged to participate in government and private tenders worldwide and exports. Such countries will be treated as “Pariahs” and rejected by consumers due to their low Carbon rating. Technologically advanced countries or companies who can use fossil fuel but with lowest or Zero CO2 emissions will also be able to compete with renewable energy technologies. Carbon Rating will offer everybody the same level playing field. Carbon is the fundamental building block of organic life on earth which is essential for human survival but unabated CO2 emission by human activities is the culprit. I strongly believe Zero Carbon emission can be achieved even while using fossil fuels by constantly recycling CO2 in the form of regenerated synthetic natural gas. It will not only eliminate CO2 emission but also generate synthetic fuel using renewable Hydrogen without any necessity to exploit fresh fossil fuels. Using renewable Hydrogen as a storage medium or as energy carrier may be expensive due to inherent nature of Hydrogen atom. UN can introduce Carbon Rating as a single tool to measure the Carbon footprint of a specific technology with the lowest or Zero CO2 emission worldwide to start with. They should be more proactive in promoting technologies with highest Carbon rating and encourage countries to adopt such measures.

Saturday, May 4, 2019

Can renewable technologies mitigate climate change?


Energy generation and usage is considered not only as a mark of progress of a nation but also security of a nation. That is why countries go to extraordinary lengths to achieve such a security and everything else becomes secondary in the path of their goal. That is why countries with high oil and gas reserves enjoy good relationship and privileges with powerful nations of the world. Countries who do not have their own oil and gas reserves and who completely rely on import of oil and gas have no choice but maintain a good relationship with oil rich countries despite their difference in ideologies and policies. But with warming globe and changing climate the dependence on fossil fuels is fast becoming unsustainable and countries look for alternatives. It is good news for the whole world especially for nations who depend completely on import of oil and gas because they can develop their own renewable energy sources to lower their emissions. But there is one major difference. Countries who depend on import of oil and gas required to develop only an infrastructure to store and distribute oil and gas, But with renewable energy they have to develop an infrastructure to produce the hardware necessary to use alternative energy sources such as solar, wind, geothermal but also energy storage such as batteries. The warming globe and changing climate have become a grave threat to the plant earth and a threat to lives of entire future generations. It is the greatest challenge of the industrialized world. One can view this as threat or as an opportunity. But it is time to act irrespective of our views and we must act now. It is an opportunity for scientists and engineers to view energy sources and their applications in a new perspective. It is an opportunity to understand how human activities affect our environment and how not to damage them but preserve them for our future generations while developing new alternatives. Humanity is just a part of a larger environment and any damage to planet earth is at our own peril. It is an ancient wisdom, but we neglected them. When an aboriginal of Australia said “we belong to earth and earth does not belong to us” we failed to listen to them. We(people) became bigger than They (environment). In pursuit of a new energy source one must be extremely careful in examining Nature and how she operates so that we do not make the same mistakes of the past. As we develop renewable energy as a potential energy source of the future, we should be aware of the life cycle of such a system and their impact on environment. Renewable energy requires hardware that uses exotic metals, catalysts, polymers, new Carbon sources and glasses. As we switch to Carbon free economy, we should make sure that there are no emissions in developing renewable energy sources and if necessary impose Carbon tax on such emissions and, to develop recycling technologies to recycle that hardware safely and environmentally friendly manner. It is critically important issue as we move forward. According to an article published in Chemical engineering News “The potential quantities of waste are enormous. By 2025, waste batteries removed from electric vehicles will total 95 Giga watt hours, according to an estimate by Bloomberg New Energy Finance. That pile will weigh roughly 600,000 metric tons. A similar amount of old solar panels will have accumulated by then, according to projections by the International Renewable Energy Agency. IRENA anticipates solar panel waste could reach 78 million metric tons by 2050. And Europe could see 300,000 metric tons per year of decommissioned wind turbine blades in the next two decades, says the trade association Wind Europe. Each year, approximately 300,000 metric tons of lithium-ion battery waste is generated around the world, says Sheetanshu Upadhyay, an analyst with India’s Esticast Research & Consulting. Most of those batteries come from mobile devices, but that waste will soon be overshadowed by old electric car batteries. Sales of plug-in electric vehicles are expected to surpass 2.6 million in 2020, according to Navigation Research.” The above data shows the amount of CO2 emission associated with implementation of renewable energy sources soon. There is a potential for large scale recycling industries on renewables, but it will come with a price and environmental issues. Right now, the main problem is the CO2 emission and the only way to tackle this problem is impose Carbon tax on emissions while encouraging industries with low emission technologies. It should be possible for UN to pass a unanimous resolution among the nations to address climate change by imposing Carbon tax uniformly across the nations. By such resolution UN can bring all those countries to the table who are currently reluctant to be a party to the Paris accord. Countries can use “Carbon rating” similar to “energy ratings” currently used for measuring energy efficiencies in appliances such as Heaters and air-conditioners. The lowest emitting technologies will get the highest Carbon rating while high emission technologies will get the lowest Carbon ratings. By using such a method countries who are reluctant to act on climate change will be disadvantaged; they will not be able to compete in international market or export their goods to low emitting countries based on Carbon ratings.

Sunday, November 5, 2017

Carbon Recycling Technology


CRT Carbon Recycling Technology known as “Ramana Cycle” is a new patented concept and system that addresses current problems faced by energy industries with a single solution Current problems: 1.Renewable energy is only a fraction of total energy generated world-wide. Fossil fuel especially natural gas in the cleanest and most widely accepted fuel for base load power generation. However, it emits CO2 a greenhouse gas causing climate change. 2. Electric and Fuel cell cars can eliminate Carbon emission from our roads, but it will dramatically increase the electricity requirement which cannot be met by renewable energy sources alone. Eventually the electricity demand will have to be met by fossil fuels which will sharply increase CO2 emissions in a short span of time thus exacerbating global warming. 3.Grid connected renewable energy has many problems due to intermittent nature of renewable energy such as synchronicity, electronic interface with HT lines, metering etc. There is at least 22% loss while transmitting renewable energy into the grid creating dispatchability issues. Power is transmitted 24 x 7 on HT lines. Solution: CRT addresses all the above issue with a single solution as described below. CRT synthesizes a synthetic fuel CH4, a Hydrocarbon known as SNG (synthetic natural gas) using Carbon from CO2 emissions of gas based power plants and renewable Hydrogen generated from water using renewable energy sources such as Hydro/solar/wind /biomass/ geothermal etc. Once SNG is generated then it can substitute natural gas currently used in power generation. It means one can generate their own SNG and need not depend on oil and gas industries and use conventional gas turbine and generate base load power and transmit using existing transmission lines. This power can be used by electric as well by Fuel cars. There will be a net Zero Carbon emission.The same system can also supply Hydrogen to Fuel cell cars. CRT can be implemented using existing systems supplied by internationally known companies with proven technologies and systems. There are absolutely no commercial risks whatsoever. These systems can be deployed immediately, and they are commercial ready. Each plant is designed specifically based on the capacity, location and purpose.

Wednesday, June 29, 2016

Carbon is to return to Carbon


Carbon emission is a matter of great concern to all the countries around the world due to the global warming and climate change. After the Paris talks many countries are genuinely trying to reduce their emissions either by switching over to renewable energy or cutting down their emissions by reducing their Carbon footprint. In their desperate measure to reduce Carbon emissions some countries like Canada are trying to accelerate carbon emission reduction by promoting innovation technologies with millions of dollars of grant money. Recent fires in the state of Alberta, rich in oil sand deposits have opened the eyes of the world to witness how a disaster can unfold so quickly and thousands of people to be evacuated in a short notice. Many fled their homes leaving behind their valuables and memories. It was one of the worst fire disasters in recent memory. Canada especially the state of Alberta is now all the more determined to avert such incidents in the future but also equally determined to reduce their Carbon emissions. The fire is due to dry conditions due to global warming and accelerated by oil sands. It is a perfect recipe for a disaster. Many countries have switched over from coal to natural gas as a cleaner fuel to reduce their Carbon emission. Natural gas emits less CO2 compared to coal. But does it help combat global warming? One has to compare the two different fuels and their combustion by the following reactions: C + O2 ----> CO2 and CH4 + 2O2 -------> CO2 + 2H2O Combustion of coal requires less Oxygen (air) when compared to combustion of natural gas which requires twice the volume of Oxygen (air). Coal combustion emits oxides of Nitrogen and Sulphur apart from CO2 and a minor quantity of water vapour and particulate matters. Combustion of natural gas releases twice the volume of water vapour apart from oxides of Nitrogen and sulphur. Recent findings by NASA confirms that water vapour is the major greenhouse gas apart from CO2 that is responsible for warming globe and the climate change. Therefore, natural gas does not help combating global warming and climate change. The following excerpts from NASA highlights this fact: Water Vapour Confirmed as Major Player in Climate Change Credit: NASA The distribution of atmospheric water vapour, a significant greenhouse gas, varies across the globe. During the summer and fall of 2005, this visualization shows that most vapour collects at tropical latitudes, particularly over south Asia, where monsoon thunderstorms swept the gas some 2 miles above the land. Water vapour is known to be Earth’s most abundant greenhouse gas, but the extent of its contribution to global warming has been debated. Using recent NASA satellite data, researchers have estimated more precisely than ever the heat-trapping effect of water in the air, validating the role of the gas as a critical component of climate change. Andrew Dressler and colleagues from Texas A&M University in College Station confirmed that the heat-amplifying effect of water vapour is potent enough to double the climate warming caused by increased levels of carbon dioxide in the atmosphere. With new observations, the scientists confirmed experimentally what existing climate models had anticipated theoretically. The research team used novel data from the Atmospheric Infrared Sounder (AIRS) on NASA’s Aqua satellite to measure precisely the humidity throughout the lowest 10 miles of the atmosphere. That information was combined with global observations of shifts in temperature, allowing researchers to build a comprehensive picture of the interplay between water vapour, carbon dioxide, and other atmosphere-warming gases. The NASA-funded research was published recently in the American Geophysical Union's Geophysical Research Letters. AIRS is the first instrument to distinguish differences in the amount of water vapour at all altitudes within the troposphere. Using data from AIRS, the team observed how atmospheric water vapour reacted to shifts in surface temperatures between 2003 and 2008. By determining how humidity changed with surface temperature, the team could compute the average global strength of the water vapour feedback. “This new data set shows that as surface temperature increases, so does atmospheric humidity,” Dressler said. “Dumping greenhouse gases into the atmosphere makes the atmosphere more humid. And since water vapour is itself a greenhouse gas, the increase in humidity amplifies the warming from carbon dioxide." Specifically, the team found that if Earth warms 1.8 degrees Fahrenheit, the associated increase in water vapour will trap an extra 2 Watts of energy per square meter (about 11
square feet) "That number may not sound like much, but add up all of that energy over the entire Earth surface and you find that water vapour is trapping a lot of energy," Dressler said. "We now think the water vapour feedback is extraordinarily strong, capable of doubling the warming due to carbon dioxide alone." Because the new precise observations agree with existing assessments of water vapour’s impact, researchers are more confident than ever in model predictions that Earth's leading greenhouse gas will contribute to a temperature rise of a few degrees by the end of the century. The amount water vapour released by burning natural gas is twice the volume of natural gas burnt. A plant using 10,000 m3/day natural gas can release 20,000m3/day water vapour that can be recovered. In fact, if the Gulf countries can recover water from exhaust of their gas fired power plants they may not require any water by desalination of seawater at all. Current consumption of natural gas world-wide exceeds 3.5 trillion cubic meters which roughly translates to 7 trillion cubic meters of water vapour into the atmosphere. Such a large volume has a potential to change our climate system.What goes up as water vapour has to condense into water and come down.It has a potential to flood many parts of the world and we are already witnessing flash flooding more frequently.The economic loss by such natural disasters may run into several hundreds of billion dollars in future.It is absoluetly critical that human induced emissions are curtailed with great urgency. It is interesting to examine how the state of Alberta is trying to reduce their carbon emissions by promoting innovative technologies. Majority of the proposals are supposed to convert CO2 emissions into “a useful product” so that the emission can be curtailed or reduced. A quick glance on the list of the proposals they have funded so far indicates they will convert CO2 into an industrial chemical such as Methanol or a Fertilizer such as Urea or alkaline chemicals such as bicarbonates and calcium carbonates etc. Can they really solve the problem of carbon emissions by turning them into useful products? The answer is most likely no. It will help capture CO2 at Alberta but it will be released somewhere else where the end products are used. It will simply shift the problems of Carbon emission from Alberta into some other region of the world. For example, Urea synthesised from captured CO2 will again be released into the atmosphere when Urea is used by farmers. An enzyme in the soil will release the CO2 from Urea into the atmosphere. The only real solution is to convert captured CO2 back into a fuel such as SNG (synthetic natural gas) so that it can be recycled into the power plant. By this way the CO2 emission will be converted into solid Carbon. One need not bury CO2 under the ground or emit it into the atmosphere but constantly recycle into SNG so that power plant can generate power continuously without emitting any greenhouse emissions. To do this we need Hydrogen. At present Hydrogen is produced commercially from natural gas but with carbon emission. Other methods of producing Hydrogen without carbon emissions are expensive. But Hydrogen can be generated from natural gas without Carbon emission and it can be used to convert captured CO2 from power plants into SNG. In other words, two greenhouse gases namely CO2 and methane (CH4) will be reacted to generate commercially valuable Carbon nanotube as a main product as shown below. This high temperature reaction can generate superheated steam that can generate power while a valuable solid Carbon is regenerated. Such a process is still in a developmental stage but has a potential to become a commercial reality in the near future. CH4 + CO2 ------------> 2C + 2 H2O In fact, the carbon emission is converted back into a solid Carbon. The Carbon is to return to Carbon to avoid GHG emission (CO2, N2O, NO2 and H2O) that is changing our climate.

Saturday, April 23, 2016

Parched land and thirsty farmers surrounded by ocean of water


The climate is changing and the impact of such a change is felt almost in every sphere of life around the world especially in countries like India. ” Erratic monsoon rain patterns have left crops parched, jeopardizing India’s nearly $370 billion agricultural sector and hundreds of millions of jobs. Drought conditions are crippling vast swaths of India’s farmland as the country faces its driest monsoon since 2009. With more than 60 percent of India’s agriculture reliant on monsoon rains, farmers are highly vulnerable to changes in rainfall patterns and rising global temperatures, the Indian Council for Research on International Economic Relations found in a report” according to the International Business Times. The situation in Australia is no different from India, both surrounded by ocean of water yet no water to irrigate or even to drink. Many scientific studies have clearly highlighted the close relationship between warming earth, increasing salinity of seawater and the climate change. But new coal fired power plants and seawater desalination plants are set up almost every year in these countries. Both greenhouse gas and the increasing salinity of seawater will only contribute to intensify further warming of the earth. There is some awareness about the global warming by GHG but there is no awareness about the increasing salinity of seawater. One of the largest desalination plant set up in the state of Victoria in Australia is idle for so many years yet unable to supply water to struggling farmers in the country Victoria. In a way it is a blessing in disguise because it would have otherwise discharged billions of cubic meters of RO concentrate with toxic chemicals into bass strait. California law requires that any “new or expanded coastal ... industrial installation using seawater” must utilize “the best available site, design, technology and mitigation measures feasible ... to minimize the intake and mortality of all forms of marine life.” (California Water Code section 13142.5(b) The following excerpts from NASA highlights the close relationship between Ocean salinity and changing climate and rainfall.((http://science1.nasa.gov/media/medialibrary/2013/05/20/thermohaline_assembled) “SALINITY, OCEAN CIRCULATION & CLIMATE Surface winds drive currents in the upper ocean. Deep below the surface, however, ocean circulation is primarily driven by changes in seawater density, which is determined by salinity and temperature. In some regions such as the North Atlantic near Greenland, cooled high-salinity surface waters can become dense enough to sink to great depths. The 'Global Conveyor Belt' visualization (below) shows a simplified model of how this type of circulation would work as an interconnected system. The ocean stores more heat in the uppermost three (3) meters than the entire atmosphere. Thus density-controlled circulation is key to transporting heat in the ocean and maintaining Earth's climate. Excess heat associated with the increase in global temperature during the last century is being absorbed and moved by the ocean. In addition, studies suggest that seawater is becoming fresher in high latitudes and tropical areas dominated by rain, while in sub-tropical high evaporation regions, waters are getting saltier. Such changes in the water cycle could significantly impact not only ocean circulation but also the climate in which we live. 'The Global Conveyer Belt' represents in a simple way how currents move beneath the wind-driven upper ocean. This movie begins by focusing on the North Atlantic east of Greenland, where cold surface waters get saltier due to evaporation and/or sea ice formation. In this region, surface waters can become dense enough to sink to the ocean depths. This pumping of surface water into the deep ocean forces the deep water to move horizontally until it can find areas where it can rise back to the surface. This very large, slow current -- estimated to be on the order of 1000 years to complete a full circuit -- is called the thermohaline circulation because it is caused by temperature (thermo) and salinity (haline) variations. Credit: NASA/GSFC Launched June 10, 2011, aboard the Argentine spacecraft Aquarius/Satélite de Aplicaciones Científicas (SAC)-D, Aquarius is NASA’s first satellite instrument specifically built to study the salt content of ocean surface waters. Salinity variations, one of the main drivers of ocean circulation, are closely connected with the cycling of freshwater around the planet and provide scientists with valuable information on how the changing global climate is altering global rainfall patterns. The salinity sensor detects the microwave emissivity of the top 1 to 2 centimetres (about an inch) of ocean water – a physical property that varies depending on temperature and saltiness. The instrument collects data in 386 kilometre-wide (240-mile) swaths in an orbit designed to obtain a complete survey of global salinity of ice-free oceans every seven days.” According to a new report on desalination in California Desalination is the removal of salts from saline water (brackish or seawater) using distillation or membrane separation technologies in most cases Current desalination technologies produce a toxic concentrated brine discharge that contains all the salts and dissolved solids along with process chemicals. Putting the brine “cocktail” back into the ocean damages the marine environment and runs counter to the environmental goals of the state. The brine creates extensive damage in the ocean in areas sometimes called dead zones. The damage affects the environment, the economy, and the quality of life of the neighbouring areas on land and off shore. Desalination is receiving increased attention as a means for addressing the water supply challenges of California. The state’s growing population, much of which is located in semi-arid regions, periodic droughts, and other water demands create pressure on existing water supplies and strong incentives to find new ones. (California Desalination Planning Handbook, Dept. of Water Resources, 2008, p.1) With the state’s 3,427 miles of Pacific coastline, (CA Water Plan, 2009, Volume 2, Strategic Resource Management, Chapter 26, Water‐Dependent Recreation. 26‐5) desalination of sea water is a reasonable response to the need for a reliable supply of more potable water—if it can be done without environmental damage. New desalination technologies exist that produce no brine (and no concentrated brine cocktails). They should be chosen as best available technology (BAT) in the future. The California report says: “Consequences of all aspects combined
The brine cocktail damages many life forms - plant and animal; adults, larvae, and eggs. It kills some outright. It prevents reproduction for some. It impedes growth and thriving for some. And the damage can happen at only slightly elevated levels of concentration. The hypoxic brine and chemical mixture is like plastic wrap suffocating the organisms living on the sea floor. Fish can swim away to better water conditions. Plants, eggs, larvae, and stationery or slow moving animals like coral, clams, and crabs cannot. In a comprehensive review of published studies about the impacts of desalination plant discharges, David A Roberts and team reviewed 8 field studies and 10 laboratory experiments that examined a range of salinities and a variety of organisms from waters in the US and Spain. They concluded that experiments in the field and laboratory clearly demonstrate the potential for acute and chronic toxicity, and small-scale alterations to community structure following exposures to environmentally realistic concentrations of desalination brines. The observed effects of the tests in the study mentioned above included fertilization, germination, growth and development, and mortality on seven organisms. The study was focused on the effects of several brine concentrations and used brine prepared in the laboratory or taken from an RO plant discharge. It did not look at the effects of the chemical additives or exposure over long terms. Even so, it found effects over limited time periods on several species at some state of development and varying concentrations. For many marine invertebrates the larvae are especially susceptible to brine concentrations.” Both energy and water are increasing in demand as the population grows and it is critical to choose the right type of technology to sustain such a growth. Wrong choices made due to popularity or quick fixes will lead to long term consequences. Desalination with zero liquid discharge should be a mandatory so that large multinational companies will at least spend some funds on R&D towards achieving such a goal. Otherwise it will continue to be a “business as usual”. The author recently won a water challenge from GE -Statoil and you can view it in the following link ; http://gereports.com.au/post/25-05-2016/freeze-one-man-instantly-solves-the-world-s-dirtiest-water-problem

Friday, December 18, 2015

Decarbonizing Planet Earth with Carbon


“The method adopted in Vedanta to impart the knowledge of Brahman is known as the method of superimposition (adhyaaropa) and subsequent negation (apavaada). In the Bhashya, Bhagavatpada says, “The transmigrating self is indeed Brahman. He who knows the self as Brahman which is beyond fear becomes Brahman. This is the purport of the whole Upanishad put in a nutshell. It is to bring out this purport that the ideas of creation, maintenance and dissolution of the universe, as well as the ideas of action, its factors and results were superimposed on the Self. Then, by the negation of the superimposed attributes the true nature of Brahman as free from all attributes has been brought out. This is the method of adhyaaropa and apavaada, superimposition and negation, which is adopted by Vedanta.” (Ref: What are Upanishads? : An over view by S.N. Sastri on Luthur.com) The analogy that is often used to describe the process of superimposition and negation is that of ‘using a thorn to remove a thorn’. Finally, when the last thorn is removed, the thorn used to remove it is thrown away as well. Similarly, Carbon can be used to reduce carbon emission while power is generated! Let us consider the issues of Carbon emission and global warming resulting in climate change in the above context. Recent conference in Climate change held in Paris is acclaimed to be a success to the planet earth collectively adopted by 195 countries both developed and developing. In a nutshell they all have agreed to reduce their carbon emissions to limit the global warming to less than 2C or even 1.5 between 2030 and 2050. Is it really practical to achieve the above target given the nature of reduction and the complexity of imposing such a reduction within the time frame? It is a big question mark. The only practical method to reduce CO2 is by using Hydrogen CO2 + H2----> CO + H2O and then convert CO into a useful product such as Urea NH2CONH2 a fertilizer. Production of Urea requires additional Hydrogen which is again obtained by combustion of fossil fuel resulting in CO2 emission. Moreover, CO2 will eventually be released at the point of usage of urea later. While trying to reduce Carbon emission one will end up with more Carbon emission in the atmosphere.
The carbon emission from power plants can be substituted with renewable energy sources such as wind and solar at a very high cost but how the emissions from chemical plants such as urea or from automobile emissions, steel plants and cement plants be contained? We should also remember that silicon wafer to produce solar panels consume large amount of power which now comes invariably from fossil fuels. There is a long list of such plants emitting Carbon every day from all over the world. But there is a possibility to reduce emissions substantially by converting CO2 emissions from power plants into a synthetic fuel which can then substitute fossil fuel to continue power generation. The CO2 resulting from combustion of synthetic fuel will be recycled in the same manner mentioned above thus completing a cycle. To convert CO2 into a synthetic fuel we will require Hydrogen either by renewable sources or non-renewable sources. The non-renewable sources for Hydrogen cannot be a long term solution but renewable Hydrogen is very expensive at this stage. Therefore, Hydrogen is the only source which will not only help reduce Carbon emissions but also help eliminate Carbon completely from planet earth. Renewable Hydrogen is the key to decarbonize the planet earth. However, it may be possible to decarbonize the planet temporarily by using Hydrogen derived from fossil fuel without emitting CO2! It is not just a theory but practical because the technology has already been tested! In this process the Carbon will remain in the loop where it will neither be buried nor emitted into the atmosphere but constantly recycled.

Friday, November 14, 2014

Why climate change is irreversible and Science is helpless?


The "intuitive mind" is a sacred gift and the rational mind is a faithful servant.We have created a society that honors the servant and has forgotten the gift" - Albert Einstein. United Nation’s panel on climate change (IPCC) recently confirmed that climate change is real, it is man-made and it is irreversible and if nations do not act now then they will have to face catastrophic climate events in the future. They were categorical and unequivocal in their statements this time. They have come to this conclusion because science has not demonstrated how to capture carbon emission and sequester them under the earth using current technologies. Scientists neglected carbon emissions while generating power using fossil fuels for decades because they had no idea what would be the consequences of such emissions in the future. It is a clear example how a human mind has a limited capacity to conceive an idea “holistically” but has a capacity to satisfy human needs temporarily without knowing the unforeseeable consequences. When human beings interfere with Nature in the name of Science there are consequences to face and a price to pay because Nature is nothing but the manifestation of the highest intelligence. A real science can be no further than asserting this truth. Ignorance when combined with greed can be a deadly combination and the consequences will be costly and to be paid dearly by generations to come. Carbon emission and climate change is one such issue. Science has improved human life on earth in so many ways but at the same time they also have created many side effects which can be identified only after decades of their use. When they are identified it is often too late and causes irreversible damage to system or nature. Any irreversible change human beings cause in Nature will have its own consequences. Science has shown Carbon is the backbone of all organic matter on planet earth whether it is DNA of a human being or a glittering diamond from deep under the earth. The same Carbon reveals the age of a skeleton of a Dinosaur buried millions of years ago. Science is a powerful tool but it also has two sides, benign and malign. The power to discriminate between the good and bad is the fundamental pre-requisite of science. Carbon plays an indispensible role in the natural world due to its unique atomic structure and ease with which it can build molecules especially with hydrogen. That is why hydrocarbon is playing such an important role in human civilization and it is not easy to substitute it with another candidate without a long term research and development work. But we have a very short time to discover a substitute for hydrocarbon which can serve our current purposes. Few nuclear power plants around the world can satisfy the growing demand for the electricity without any carbon emission but their long term consequences are unknown. The result of a thermo-nuclear explosion over Hiroshima and Nagasaki are the grim reminder of such consequences. When earth converts organic matter into a fossil over a period of millions of years deep under the earth, it gives us a clue why Nature has buried them and not left them on the surface of the earth. But that did not deter human beings from digging them out and burning them to generate heat to meet their temporary energy needs without realizing the long term consequences of such actions. Many technologies have become obsolete over a period of time for various reasons but some of them lingered long enough to create long lasting consequences and there are many evidences in history to emphasize this truth. Power generation using fossil fuel is one such clear example of a technological bungle. It only confirms the inadequacy of human knowledge. It also reveals the temporary nature of such inventions stemming from temporary nature of human life. Science also has changed dramatically in the last few decades and it no longer serves the original purpose of unraveling and understanding the mysteries of Nature but caters and serves to the greed and dominance of selected rich and powerful people and the nations in the world. Science has become a tool to create material wealth and power rather than to understand nature and apply them into our lives in a compatible way and to enrich human life. These experiences have taught one important lesson. Any scientific discovery when applied in real life must be “holistic” and be compatible with Nature and should follow Natural laws. When science becomes a wealth creating tool then any knowledge born out of such science can only serve to create wealth often at the cost of Nature. That is why rich and powerful corporate and nations spend billions of dollars in such wealth creating discoveries rather than on discoveries that address human problems of the world that may not return their investment in time. The anomaly is more they invest on wealth creating science more damage they cause to earth and human life. Such discoveries serve only one purpose namely “the wealth creation “. Wealth and power has overtaken science and knowledge. Climate change has become a serious issue and it is absolutely clear that CO2 in the atmosphere has increased to the current level for the first time in millions of years and human beings have contributed greatly to this increase. Yet, nations around the world are unable to come to-gather and agree on how to reduce such emissions. The only way to solve this issue is to use Science as a tool which created this problem in the first place. When steam engine was invented it was considered as the dawn of industrial revolution: when electricity generation using electro-magnetism was invented it was hailed as a land mark in scientific development. When power was generated using fossil fuel to accelerate the industrial growth very little attention was paid to the carbon emission. When huge quantities of sea water was used to cool the cooling towers in fossil fuel powered or nuclear power plants very little attention was paid to the discharge of effluent in to the sea. When large desalination plants were set up to quench the thirst of oil rich countries very little attention was paid to the toxic discharge of effluent in to the sea. What was missing in all the above developments was the negligence of Nature by discharge of emissions or effluents into the Natural world. We have taken Nature for granted and treated her with great indignity and contempt. Few decades ago Scientists were able to make remarkable discoveries using only their mind as a tool and theorizing certain concepts. They were abstract in nature but were validated whenever applied in practice. There were no big investments by Governments or companies on scientific discoveries, no Intellectual property portfolios, no personal ownership, no disputes on infringement as to who owns and what. Today scientific inventions and intellectual properties are the biggest assets and monopolies of few corporate and nations. Several hundred billions are spent on patents, trademarks and copy rights to stamp their authorities and ownerships. But where such knowledge came from? Who pays for the consequences of ill -conceived scientific discoveries that prove disastrous in the long run? Who can sue them when such technologies are passed on to several generations without knowing their long term consequences? Science is now suggesting methods to address carbon emission using various renewable energy sources such as solar, wind, biomass etc. But these methods often use capital intensive equipments to use such energy even though Nature provides them free of cost. Such equipments also require large energy input to produce which again comes from fossil fuel maintaining the level of CO2 in the atmosphere. The investment on renewable energy has come down by nearly 70% according to latest news and many countries are gearing up to step up their fossil fuel production in the name of “energy security” simply because they have become “addicted “to old ways of living. In fact there is too much at stake for these countries and they are stubbornly sticking to old ideas. Science has become useless in addressing climate change because it is no longer about science but about nation’s security and maintaining material wealth of the citizens of a particular nation and the popularity of politicians among the ignorant masses and winning their elections and holding to their power. Sun is the only source of energy on the planet earth and all other forms of energy such as wind and biomass etc are only by-products of sun. Current power generating technologies heavily depends of conversion of thermal energy into electrical energy and the source of thermal energy is by fossil fuel or nuclear. Recently light energy from sun is converted directly into electrical energy using photovoltaics. They also use thermal energy of the sun using solar concentrators to generate power in conventional way using turbines. But high initial cost, lack of energy storage technologies and intermittent nature of renewable sources increases the cost of energy compared to conventional coal fired power and alternative energy has created an uncertainty in the power industry. Energy industry is now at the cross road and it has divided people into two categories; one group accepts science of global warming and climate change and advocate substituting fossil fuel with carbon free energy sources and another group express skepticism over climate science and support fossil fuel energy sources in order to continue and maintain the industrial growth and employment. If countries like US and Australia who have rich deposits of high grade coal and depend heavily on coal based power plants and industries then they have an option to increase the efficiency of coal utilization by way of emission reduction. For example they can reduce carbon emission substantially using gasification technologies. In fact, under certain special conditions it is possible to generate syngas from coal with highest Hydrogen content (even up to CO: H2 ratio of 20:80).This will increase not only the calorific value of syngas but also reduce carbon emission. Companies like GE, USA are developing special gas turbines for syngas with high hydrogen content. Alternatively conversion of coal into synthetic natural gas (SNG) can reduce the carbon emission without dispensing with coal completely. Renewable hydrogen is a potential long term substitute for fossil fuel both for power industry and transportation. But it requires special handling due to its high explosive nature and it is often easier to handle it with a mix of hydrocarbon such as Methane or Carbon monoxide. Fuel cell is an emerging technology that can use hydrogen for power generation as well as for transportation. However it requires expensive catalysts and they are currently confined to smaller applications in power industry. Fuel cell opens up a new way to generate electricity by simply stripping electrons from a hydrogen atom with Platinum and allowing the resulting proton exchange by special membranes in a cell converting chemical energy into an electrical energy. It is certainly a breakthrough in power generation but there is a long way to go before commercializing them on larger scale. It seems Carbon will continue to play an important role for years to come due to its unique nature in the natural world. But high carbon intensity fuel such as coal and current methods of direct combustion will have to be abandoned and substituted with SNG or Syn gas with high hydrogen content by gasifying coal. By this way hydrogen can be introduced into the current energy mix without substantial deviation from using coal while maintaining the carbon emission well within the limit. However a long term strategy will require complete substitution of fossil fuel with renewable hydrogen or with completely a new method of electricity generation such as Fuel cell without using a thermal energy. Electricity is nothing but a flow of electrons and techniques that are currently used in Fuel cell such as proton exchange membrane should be developed using low cost catalyst and materials on a much larger scale to substitute fossil fuel completely. It is clear that power generation technology should be delinked with using carbon source or combustion for that matter. Combustion of hydrogen electrochemically is an elegant solution but lot of research and development is required. But the stark reality is climate is already changing and the climate change is irreversible and we have to use science to adopt our lives to the changing climate in the future. We cannot capture the carbon and bury them under the earth as Nature does because Nature has not taught us how to do it in a short span of time. The impact of climate change can be minimized or averted depending upon how fast carbon emission is reduced using new technologies. Climate change is an important lesson from which the scientific community should learn how not to interfere with Nature without a complete understanding of it. Sun shine and clean air are not just for rich and powerful but to the entire humanity on the planet. Any scientific discovery should be “holistic” and compatible with Nature and easily accessible to all human beings. Solar and biomass are emerging as alternative technologies to tackle climate change but these simple and holistic solutions were in fact practiced for decades in rural India. Farmers in India feed their cattle with cellulosic fibers (polysaccharides) as a feed and use their waste in the form of “solar” dried cakes (cow dung cakes) as a fuel that has a calorific value of 2100kj (Wikipedia). They also use the waste to generate Methane by anaerobic digestion. These technologies are not new but the challenge is they should to be built on large commercial scales to meet the demand of the growing population in a holistic way. Industrialized countries are now trying to convert the same cellulose (polysaccharides) into industrial alcohol instead of converting corn starch. When plants grow by photosynthesis using sun, it generates starch, lignin, cellulose as well as fatty acids in oil seeds. It is important to understand that Nature provides them as food for human beings and animals and not as a raw material to generate fuel or energy and that is why “holistic solutions” are the key for the survival of science and technology as well as humanity in the future.

Friday, January 3, 2014

Coal may be the Problem and the Solution too!


Can renewable energy really stop GHG emissions and global warming? Renewable energy is slowly but steadily becoming a choice of energy of the people due to its potential to reduce GHG emissions and global warming. The changing weather pattern around the world in recent times are testimony for such a warming globe. Can renewable energy really reduce the GHG emissions and reduce the global warming predicted by scientists? Thousands of large coal- fired power plants are already under implementation or planning stages. According to World’s resources institute, their key findings are : 1. According to IEA estimates, global coal consumption reached 7,238 million tonnes in 2010. China accounted for 46 percent of consumption, followed by the United States (13 percent), and India (9 percent). 2. According to WRI’s estimates, 1,199 new coal-fired plants, with a total installed capacity of 1,401,278 megawatts (MW), are being proposed globally. These projects are spread across 59 countries. China and India together account for 76 percent of the proposed new coal power capacities. 3. New coal-fired plants have been proposed in 10 developing countries: Cambodia, Dominican Republic, Guatemala, Laos, Morocco, Namibia, Oman, Senegal, Sri Lanka, and Uzbekistan. Currently, there is limited or no capacity for domestic coal production in any of these countries. 4. Our analysis found that 483 power companies have proposed new coal-fired plants. With 66 proposed projects, Huaneng (Chinese) has proposed the most, followed by Guodian (Chinese), and NTPC (Indian). 5. The “Big Five” Chinese power companies (Datang, Huaneng, Guodian, Huadian, and China Power Investment) are the world’s biggest coal-fired power producers, and are among the top developers of proposed new coal-fired plants. 6. State-owned power companies play a dominant role in proposing new coal-fired plant projects in China, Turkey, Indonesia, Vietnam, South Africa, Czech Republic and many other countries. 7. Chinese, German, and Indian power companies are notably increasingly active in transnational coal-fired project development. 8. According to IEA estimates, the global coal trade rose by 13.4 percent in 2010, reaching 1,083 million tonnes. 9. The demands of the global coal trade have shifted from the Atlantic market (driven by Germany, the United Kingdom, France and the United States) to the Pacific market (driven by Japan, China, South Korea, India and Taiwan). In response to this trend, many new infrastructure development projects have been proposed. 10. Motivated by the growing Pacific market, Australia is proposing to increase new mine and new port capacity up to 900 million tonnes per annum (Mtpa) — three times its current coal export capacity. The above statistics is a clear indication that GHG emissions by these new coal-fired power plants will increase substantially. A rough estimation indicates that these new plants will emit Carbon dioxide at the rate of 1.37 mil tons of CO2/hr or 9.90 billion tons of CO2 /yr in addition to the existing 36.31 Gigatons/yr (36.31 billion tons/yr) in 2009. (According to CO2now.org). If this is true, the total CO2 emissions will double in less than 4 years. If the capacity of new PV solar plants are also increased substantially then the CO2 emissions from PV solar plants will also contribute additionally to the above. There is no way the CO2 reduction to the 2002 level can be achieved and the world will be clearly heading for disastrous consequences due to climate change. The best option to reduce GHG emissions while meeting the increasing power demand around the world will be to recycle the Carbon emissions in the form of a Hydrocarbon with the help of Hydrogen. The cheapest source of Hydrogen is coal. The world has no better option than gasifying the coal instead of combusting the coal. Capturing Carbon and recycling it as a fuel : Solar power, wind power and other renewable energies generated 6.5% of the world’s power in 2012. This is part of a rising trend , but there is a very long way to go before renewable sources generate as much energy as coal and other fossil fuels. Solar panel of 1m2 size requires 2.4kg of high grade silica and Coke and it consumes 1050 Kwh of electricity, mostly generated by fossil fuel based power plants. But 1m2 solar panel can generate only 150kwh/yr and it will require at least 7 years to generate the power used to produce 1m2 solar panel in the first place. More solar panels mean more electricity consumption and more GREEN HOUSE GAS EMISSIONS.A large quantity of CO2 will have to be emitted into the atmosphere for the production of several GW (Giga- watts) of solar power.With thousands of newly planned and implemented coal fired power plants in the near future the greenhouse gas emission is likely to go up. It could take at least thirty years before renewable energy is as strong in the marketplace as non-renewable sources. In consequence, there is a need to use fossil fuels more effectively and less detrimentally until the renewables can play a major role in global energy production. One approach tried for more than a decade has been carbon capture, which stops polluting materials getting into the atmosphere; however subsequent storage of the collected materials can make this process expensive. Now an Australian based company has gone one step further and designed a process that not only collects CO2 emissions, but also turns it into a fuel by using the same coal! Clean Energy and Water Technologies has developed an innovative solution to avoid carbon emissions from power plants. The novel approach uses coal to capture carbon dioxide emissions (CO2 ) from coal-fired power plants and convert them into synthetic natural gas (SNG). Synthetic natural gas would then replace coal as a fuel for further power generation and the cycle would continue. No coal is required for further power generation. Through this method, the captured Carbon could be recycled again and again in the form of a Hydrocarbon fuel (SNG) with no harmful gas emissions. Carbon is an asset and not a liability. If Carbon is simply burnt away just to generate heat and power then it is a bad science, because the same Carbon can be used to generate several products by simply recycling it instead of venting out into the atmosphere. Carbon is the backbone of all valuable products we use every day from plastics to life saving drugs! As well as seeking a patent for this breakthrough innovation, Clean Energy and Water Technologies is seeking investment for a demonstration plant. Once demonstrated, it would then be possible to retrofit current coal-fired power stations with the new technology, increasing their economic sustainability and reducing their impact on the environment. 1. The Economic Pressures : Power is an integral part of human civilization. With the steady increase in human population and industrialization the demands for energy and clean water has reached unprecedented levels. The gap between the demand and supply is steadily pushing the cost of power and water higher, whilst the supply of coal, oil and gas is dwindling. The prospect of climate change has compounded problems. Many countries around the world have started to use renewable energy such as solar, wind, hydro and geo-thermal power; but emerging economies such as India and China are unable to meet their demands without using fossil fuels. At present, it is far cheaper to use the existing infrastructures associated with non-renewable energy, such as coal-fired power stations. Renewable energy sources are intermittent in nature and require large storage and large initial investment, with sophisticated technologies pushing the cost of investment higher. Governments could use environmental tariffs on power use to help make renewable energy more competitive, but politicians know that the public tend to not like such an approach. 2. Demonstration Plant: The estimated investment required for a demonstration plant is likely to be $10 million; however the potential for a good return on investment is high, as shown by the following estimation for a 100MW plant. • A 100MW coal-fired power plant will emit 98 Mt/hr CO2 • Coal consumption will be about 54Mt/hr • To convert 98Mt/hr CO2 into SNG, the plant needs to generate 390,000m3/hr syngas by coal gasification. • The gasification plant will require 336 Mt/hr coal and 371 m3/hr water. • The net water requirement will be : 95.70m3/hr • The SNG generated by the above plant will be : 95,700m3/hr and steam as by-product : 115Mt/hr. • Potentially SNG can generate a gross power of 500 MWS by a Gas turbine with combined cycle operation. • The plant can generate 500MW (five times more than the coal-fired plant) from CO2 emissions. • Existing 100MW coal fired power plant can use SNG in place of coal and sell the surplus SNG to consumers. • Surplus SNG will be about 75,000 m3/hr.( 2400 mm Btu/hr) with sale value of $36,000/hr. @ $15/mmBtu. • Annual sales revenue from sale of surplus SNG will be : $ 300 mil/yr. • The entire cost of coal gasification and SNG plant can be recovered back in less than 5 years. 3. Carbon Capture and Storage : Carbon capture and storage is the process of capturing waste carbon dioxide (CO2 ) from large point sources, such as fossil fuel power plants, transporting it to a storage site, and depositing it where it will not enter the atmosphere, normally an underground geological formation. The aim is to prevent the release of large quantities of CO2 into the atmosphere. It is a potential means of mitigating the contribution of fossil fuel emissions to global warming and ocean acidification. The long term storage of CO2 is a relatively new concept. The first commercial example was Wey burn in 2000. Carbon capture and storage applied to a modern conventional power plant could reduce CO2 emissions to the atmosphere by approximately 80–90%, but may increase the fuel needs of a coal-fired plant by 25–40%. These and other system costs are estimated to increase the cost of the energy produced by 21–91% for purpose built plants. Applying the technology to existing plants could be even more expensive. 4. Global Warming : Global warming is the rise in the average temperature of Earth's atmosphere and oceans since the late 19th century and its projected continuation. Since the early 20th century, Earth's mean surface temperature has increased by about 0.8 °C (1.4 °F), with about two-thirds of the increase occurring since 1980. Scientists are more than 90% certain that it is primarily caused by increasing concentrations of greenhouse gases produced by human activities such as the burning of fossil fuels by coal-fired power plants. 5. Greenhouse Gases Without the earth's atmosphere the temperature across almost the entire surface of the earth would be below freezing. The major greenhouse gases are water vapour, which causes about 36–70% of the greenhouse effect; carbon dioxide (CO2 ), which causes 9–26%; methane (CH4), which causes 4–9%; and ozone (O3), which causes 3–7%. According to work published in 2007, the concentrations of CO2 and methane have increased by 36% and 148% respectively since 1750. These levels are much higher than at any time during the last 800,000 years, the period for which reliable data has been extracted from ice cores. 6. The Future of Global Warming?: Climate model projections were summarized in the 2007 Fourth Assessment Report by the Intergovernmental Panel on Climate Change (IPCC). They indicated that during the 21st century the global surface temperature is likely to rise a further 1.1 to 2.9 °C (2 to 5.2 °F) for their lowest emissions scenario and 2.4 to 6.4 °C (4.3 to 11.5 °F) for their highest. 7. The Impact of Global Warming? : Future climate change and associated impacts will vary from region to region around the globe. The effects of an increase in global temperature include a rise in sea levels and a change in the amount and pattern of precipitation, as well a probable expansion of subtropical deserts. Warming is expected to be strongest in the Arctic and would be associated with the continuing retreat of glaciers, permafrost and sea ice. Other likely effects of the warming include a more frequent occurrence of extreme weather events including heat waves, droughts and heavy rainfall, ocean acidification and species extinctions due to shifting temperature regimes. There is a divided opinion among scientists on climate science. Major power consuming countries like the US, Europe, Japan and Australia are reluctant to sign the Kyoto Protocol and agree to a legally binding agreement. This has resulted in non-cooperation among the nations and the world is divided on this issue. Such disagreement has hampered development of non-renewable energy. Ahilan Raman is the inventor of the innovative process mentioned in the article. If you have any further questions or like to become a part of this innovative technology, please feel free to contact him directly by writing to this blog.

Sunday, May 12, 2013

Flawed Carbon pricing and the cost of global warming

The climate is changing with increasing global warming caused by man-made Carbon emission. The economic impact of global warming can no longer be ignored by Governments around the world because it is impacting their budget bottom lines. Weather is becoming unpredictable. Even if Meteorological department predicts a disaster 24 hrs in advance, there is nothing Governments can do to prevent human and economic losses within a short span of time but evacuate people to safety leaving behind all their properties. Governments are forced to allocate funds for disaster management every year caused by severe draughts, unprecedented snow falls, and coastal erosion by rising sea levels, flash flooding, inundation and power black outs. We often hear people saying,” we were completely taken by surprise by this event and we have never seen anything like this in the last 50 years” after every naturals disasters explaining the nature and scale of disasters. Nature is forcing Governments to allocate more funds for disaster managements and such allocations have reached unprecedented levels. The cost of natural disasters around the world in 2011 was estimated at $ 400 billion and in 2012 it was estimated at $160 billion. The only way to fund these disasters is to tax Carbon pollution which causes global warming. Countries should take long term decisions that will save their current and future generations to come. They should understand how Carbon is emitted and what the best way to curb such emissions is. It is a global issue and its requires a collective solution. There is no use of pricing Carbon when economic recession can jeopardize the pricing mechanism? Global warming is a moral and social issue and not just an economic issue. Developed countries have been emitting bulk of the Carbon since industrial revolution while developing countries such as India and China were emitting less carbon in spite of their vast population due to their lowest per capita consumption. But that trend has now changed with rapid industrialization and economic growth of India and China and other developing economies. Australia is still a leading emitter of Carbon in the world in spite of their low population because of their high energy consumption, availability of cheap and high quality Coal and increasing mining, industrial and agricultural activities. That is why Australia is one of the first few countries who introduced Carbon tax while rest of the countries is still debating about it. Now it is clear that Carbon emission is directly proportional to industrial, economic and population growth of a country and it can be easily quantified based on the growth rate of each country. It is time countries agree to cut their Carbon emissions to sustainable levels with a realistic Carbon pricing mechanism and sign a world-wide treaty through UN. “THE EUROPEAN UNION carbon emissions trading scheme—the biggest in the world and the heart of Europe’s climate- change program—is in dire straits. The scheme’s carbon price has collapsed. The primary reason: The economic recession has suppressed manufacturing, thereby reducing emissions and creating a huge over- supply of carbon emissions allowances. Carbon trading is a market approach to reducing greenhouse gas emissions in which each facility involved is given an emissions cap for the year, and each year that cap is reduced. A firm must record and report its facilities’ emissions and must obtain allowances for its total emissions. An allowance permits a facility to emit 1 metric ton of carbon dioxide or its carbon equivalent; some allowances are given for free by the government, others can be bought at auction or from other firms. If a facility exceeds its cap, the company operating it has options: It can reduce emissions, buy allowances from other companies, or obtain allowance offsets by reducing emissions at another pollution source. The cost of an allowance is referred to as the carbon price and is driven by market conditions such as supply and demand. If the low carbon price continues, the region’s ability to meet long-term reduction targets for greenhouse gas emissions will be severely hampered because the trading scheme will fail to provide money for clean-tech programs and incentive for manufactures to adopt cleaner technologies. The trading scheme is a key component of the EU’s climate-change strategy because about 40% of all greenhouse gases emitted in the region fall under EU’s control. The mandatory scheme applies to 11,000 industrial installations, including power plants and major chemical facilities, across all 27 member states, as well as in Croatia, Iceland, Liechtenstein, and Norway. The aviation sector has been included in the scheme, but its active participation has been deferred to allow for an international agreement on aviation emissions, which is expected to be concluded in the fall. The goal of the European Commission, the EU’s administrative body and the architect of the emissions trading scheme, is to reduce all greenhouse gas emissions by 20% from 1990 levels by 2020. To contribute toward this goal, the trading scheme has targeted a 21% cut in the emissions of participating sectors by 2020 from a 2005 baseline. In recent weeks, however, the EU carbon price dropped to a new low of $5.20 for each metric ton allowance of CO2, down from a high of $23 in 2011. This is despite an annual reduction of the EU emissions cap of 1.74% through 2020 and the introduction on Jan. 1 of a new phase of the scheme requiring companies to purchase allowances. AT ITS CURRENT carbon price, the EU emission scheme’s role in encouraging chemical firms to ditch fossil fuels and adopt greener technologies “is meaningless,” says André Veneman, director of sustainability at AkzoNobel. Many of the industry’s investments in low-carbon technologies that are marginally financially viable also will likely be delayed, he says. Without a strong carbon price, the underlying push to clean-tech in the EU will come only from the price of oil, Veneman adds. Veneman and other experts say that a carbon price of between $68 and $135 is required if industry as a whole is to be forced to shift onto a new low-carbon footing. Yvo de Boer, special global adviser for climate change and sustainability for KPMG—an audit, tax, and advisory firm—and form EUROPEAN SCHEME IS IN FREE FALL Record-low CARBON PRICE threatens to derail transition away from fossil fuels and ability to meet climate-change targets.” Source: EUROPEAN SCHEME IS IN FREE FALL Record-low CARBON PRICE threatens to derail transition away from fossil fuels and ability to meet climate-change targets ALEX SCOTT, C&EN LONDO The burden of Carbon tax should be borne by both power generators as well as consumers. Even if the Carbon tax is imposed on emitters it will eventually be passed on to consumers. Either way the cost of energy will increase steeply and there is no way to avoid such escalation if we want to maintain our power consumption levels or our current life style. In other words people will have to pay penalty for polluting the air either by generating or consuming power that causes Carbon pollution. All developed countries that have been polluting the atmosphere with Carbon emission should be taxed retrospectively from the time of industrial revolution so that emerging countries need not bear the full cost of global warming. Such a fund should be used for developing renewable and clean energy technologies or to purchase Carbon allowances. Current mechanism of Carbon pricing does not penalize countries who caused the global warming in the first place for hundreds of years but penalizes only countries who currently accelerate the rate of Carbon emission. Such an approach is a gross injustice on the emerging economies and not at all pragmatic. Most of the developed countries are currently facing economic recession resulting in plummeted Carbon price. This will only encourage existing Carbon emitters to emit Carbon cheaply and penalize Renewable energy and clean energy technologies with higher tariffs and drive them to extinction. In spite of Carbon level in the atmosphere exceeding 400 ppm according to the latest report, the world is helpless to reduce the Carbon emission anytime sooner making our planet vulnerable to catastrophic natural disasters. Countries that are reluctant to pay Carbon tax will pay for Natural disasters which may be many times costlier than Carbon tax. Countries like US, European Union, Japan, Australia the largest power consumers and countries like Saudi Arabia, Russia, Venezuela, Iran, Iraq, Libya the largest oil producers should bear the cost of Carbon pollution that caused the globe to warm since industrial revolution. Such a fund should be utilized in developing innovative Renewable energy and clean energy technologies of the future. More than anything else the rich and powerful countries should declare global warming as a moral issue of the twenty-first century and take some bold and hard economic decisions to save the planet earth.

Thursday, April 18, 2013

Water and Energy are two sides of the same coin

Water and energy are two critical issues that will determine the future of humanity on the planet earth. They determine the security of a nation and that is why there is an increasing competition among nations to achieve self-sufficiency in fresh water and clean energy. But these issues are global issues and we need collective global solutions. In a globalised world the carbon emission of one nation or the effluent discharged into the sea from a desalination plant changes the climate of the planet and affects the entire humanity. It is not just a problem of one nation but a problem of the world. The rich and powerful nations should not pollute the earth, air and sea indiscriminately, hoping to achieve self-sufficiency for themselves at the cost of other nations. It is very short sighted policy. Such policies are doomed to fail over a period of time. Next generation will pay the price for such policies. Industrialised countries and oil rich countries should spend their resources on research and development than on weapons and invent new and innovative solutions to address some of the global problems such as energy and water. With increasing population and industrialisation the demand for energy and water is increasing exponentially. But the resources are finite. It is absolutely essential that we conserve them, use them efficiently and recycle them wherever possible so that humanity can survive with dignity and in peace. It is possible only by innovation that follows ‘Nature’s path. The earth’s climate is changing rapidly with unpredictable consequences .Many of us are witnessing for the first time in our lives unusual weather patterns such as draughts, flash flooding, unprecedented snow falls, bush fires, disease and deaths. Although we consider them as natural phenomena there is an increasing intensity and frequency that tells us a different story. They are human induced and we human beings cause these unprecedented events. When scientists point out human beings cause the globe to warm there were scepticism. We never believed we were capable of changing the entire weather system of the globe. We underestimate our actions. By simply discharging effluent from our desalination plants into the sea, can we change the salinity of the ocean or by burning coal can we change the climate of the world? The answer is “Yes” according to science. Small and incremental pollution we cause to our air and water in everyday life have dramatic effects because we disturb the equilibrium of the Nature. In order to restore the equilibrium, Nature is forced to act by changing the climate whether we like it or not. Nature always maintains“equilibrium” that maintains perfect balance and harmony in the world. If any slight changes are made in the equilibrium by human beings then Nature will make sure such changes are countered by a corresponding change that will restore the equilibrium. This is a natural phenomenon. The changes we cause may be small or incremental but the cumulative effect of such changes spanning hundreds of years will affect the equilibrium dramatically. We depend on fossil fuels for our energy needs. These fossils were buried by Nature millions of years ago. But we dig deep into the earth, bring them to surface and use them to generate power, run our cars and heat our homes. Our appetite for fossil fuels increased exponentially as our population grew. We emitted Carbon into the atmosphere from burning fossil fuels for hundreds of years without many consequences. But the emissions have reached a limit that causes a shift in Nature’s equilibrium and Nature will certainly act to counter this shift and the consequences are changes in our weather system that we are currently witnessing. The only way to curtail further Carbon emission into the atmosphere is to capture the current Carbon emissions and convert them into a fuel so that we can recycle them for further power generations without adding fresh fossil fuel into the system while meeting our energy demands. We can convert Carbon emissions into a synthetic natural gas (SNG) by using Hydrogen derived from water. That is why I always believe ‘Water and energy are two sides of the same coin’. But cost of Hydrogen generation from water will be high and that is the price we will have to pay to compensate the changing climate. Sooner we do better will be the outcome for the world. In other word the cost of energy will certainly go up whether we price the Carbon by way of trading or impose Carbon tax or pay incentives for renewable energy or spend several billions of dollars for an innovative technology. There is no short cut. This is the reality of the situation. It will be very difficult for politicians to sell this concept to the public especially during election times but they will have no choice. Similarly serious shortage for fresh water in many parts of the world will force nations to desalinate seawater to meet their growing demand. Saudi Arabia one of the largest producers of desalinated water in the world is still planning for the highest capacity of 600,000m3/day. This plant will discharge almost 600,000 m3/day of effluent back into the sea with more than double the salinity of seawater. Over a period of time the salinity of seawater in the Gulf region has increased to almost 40% higher than it was a decade ago. What it means is their recovery of fresh water by desalination will decrease or their energy requirement will further increase. Any increase in salinity will further increase the fossil fuel consumption (which they have in plenty) will increase the Carbon emission. It is a vicious cycle and the entire world will have to pay the price for such consequences. Small island nations in pacific will bear the brunt of such consequences by inundation of seawater or they will simply disappear into the vast ocean. Recent study by NASA has clearly demonstrated the relationship between the increasing salinity of seawater and the climate change. According to Amber Jenkins Global Climate Change Jet Propulsion Laboratory: “We know that average sea levels have risen over the past century, and that global warming is to blame. But what is climate change doing to the saltiness, or salinity, of our oceans? This is an important question because big shifts in salinity could be a warning that more severe droughts and floods are on their way, or even that global warming is speeding up... Now, new research coming out of the United Kingdom (U.K.) suggests that the amount of salt in seawater is varying in direct response to man-made climate change. Working with colleagues to sift through data collected over the past 50 years, Peter Stott, head of climate monitoring and attribution at the Met Office in Exeter, England, studied whether or not human-induced climate change could be responsible for rises in salinity that have been recorded in the subtropical regions of the Atlantic Ocean, areas at latitudes immediately north and south of Earth’s tropics. By comparing the data to climate models that correct for naturally occurring salinity variations in the ocean, Stott has found that man-made global warming -- over and above any possible natural sources of global warming, such as carbon dioxide given off by volcanoes or increases in the heat output of the sun -- may be responsible for making parts of the North Atlantic Ocean more salty. Salinity levels are important for two reasons. First, along with temperature, they directly affect seawater density (salty water is denser than freshwater) and therefore the circulation of ocean currents from the tropics to the poles. These currents control how heat is carried within the oceans and ultimately regulate the world’s climate. Second, sea surface salinity is intimately linked to Earth’s overall water cycle and to how much freshwater leaves and enters the oceans through evaporation and precipitation. Measuring salinity is one way to probe the water cycle in greater detail.” It is absolutely clear that the way we generate power from fossil fuels and the water we generate from desalination of seawater cannot be continued as business as usual but requires an innovation. New technologies to generate power without emitting Carbon into the atmosphere and generating fresh water from seawater without dumping the highly saline effluent back into the sea will determine the future of our planet. Discharge of concentrated brine into sea will wipe out the entire fish population in the region. The consequences are dire. Oil rich countries should spend on Research and Developments and find innovative ways of desalinating seawater with zero discharge of effluent instead of investing massively on decades old technologies and changing the chemistry of the ocean and the climate forever.