Google analytics tag

Showing posts with label Seawater desalination. Show all posts
Showing posts with label Seawater desalination. Show all posts

Wednesday, April 19, 2017

CAPZ desalination technology uses only Sun,Sea and WInd !


CAPZ (Clean water at affordable price with zero discharge) is a new desalination concept that separates seawater into fresh drinking water and industrial salt both simultaneously using only sun and wind power. Seawater is nothing but fresh water in abundance with valuable mineral salts dissolved in it. These minerals include Sodium, Potassium, Lithium and Magnesium and a host of other minerals in traces. It requires a holistic approach to separate them in their pure form along with fresh water for potable and industrial applications. CAPZ technology precisely attempts to do that so that the seawater intake can be put into huge economic usage while reducing or eliminating completely the discharge of highly saline effluent contaminated with chemicals back into the sea. With increasing demand for fresh water and depleting sources of fresh water due to natural and man-made causes , sea water has become an important source for fresh drinking water. Sea water is not only a source of fresh water but also a new source of clean Hydrogen an energy of the future. It requires only sun ,sea and wind to achieve this!

Saturday, April 23, 2016

Parched land and thirsty farmers surrounded by ocean of water


The climate is changing and the impact of such a change is felt almost in every sphere of life around the world especially in countries like India. ” Erratic monsoon rain patterns have left crops parched, jeopardizing India’s nearly $370 billion agricultural sector and hundreds of millions of jobs. Drought conditions are crippling vast swaths of India’s farmland as the country faces its driest monsoon since 2009. With more than 60 percent of India’s agriculture reliant on monsoon rains, farmers are highly vulnerable to changes in rainfall patterns and rising global temperatures, the Indian Council for Research on International Economic Relations found in a report” according to the International Business Times. The situation in Australia is no different from India, both surrounded by ocean of water yet no water to irrigate or even to drink. Many scientific studies have clearly highlighted the close relationship between warming earth, increasing salinity of seawater and the climate change. But new coal fired power plants and seawater desalination plants are set up almost every year in these countries. Both greenhouse gas and the increasing salinity of seawater will only contribute to intensify further warming of the earth. There is some awareness about the global warming by GHG but there is no awareness about the increasing salinity of seawater. One of the largest desalination plant set up in the state of Victoria in Australia is idle for so many years yet unable to supply water to struggling farmers in the country Victoria. In a way it is a blessing in disguise because it would have otherwise discharged billions of cubic meters of RO concentrate with toxic chemicals into bass strait. California law requires that any “new or expanded coastal ... industrial installation using seawater” must utilize “the best available site, design, technology and mitigation measures feasible ... to minimize the intake and mortality of all forms of marine life.” (California Water Code section 13142.5(b) The following excerpts from NASA highlights the close relationship between Ocean salinity and changing climate and rainfall.((http://science1.nasa.gov/media/medialibrary/2013/05/20/thermohaline_assembled) “SALINITY, OCEAN CIRCULATION & CLIMATE Surface winds drive currents in the upper ocean. Deep below the surface, however, ocean circulation is primarily driven by changes in seawater density, which is determined by salinity and temperature. In some regions such as the North Atlantic near Greenland, cooled high-salinity surface waters can become dense enough to sink to great depths. The 'Global Conveyor Belt' visualization (below) shows a simplified model of how this type of circulation would work as an interconnected system. The ocean stores more heat in the uppermost three (3) meters than the entire atmosphere. Thus density-controlled circulation is key to transporting heat in the ocean and maintaining Earth's climate. Excess heat associated with the increase in global temperature during the last century is being absorbed and moved by the ocean. In addition, studies suggest that seawater is becoming fresher in high latitudes and tropical areas dominated by rain, while in sub-tropical high evaporation regions, waters are getting saltier. Such changes in the water cycle could significantly impact not only ocean circulation but also the climate in which we live. 'The Global Conveyer Belt' represents in a simple way how currents move beneath the wind-driven upper ocean. This movie begins by focusing on the North Atlantic east of Greenland, where cold surface waters get saltier due to evaporation and/or sea ice formation. In this region, surface waters can become dense enough to sink to the ocean depths. This pumping of surface water into the deep ocean forces the deep water to move horizontally until it can find areas where it can rise back to the surface. This very large, slow current -- estimated to be on the order of 1000 years to complete a full circuit -- is called the thermohaline circulation because it is caused by temperature (thermo) and salinity (haline) variations. Credit: NASA/GSFC Launched June 10, 2011, aboard the Argentine spacecraft Aquarius/Satélite de Aplicaciones Científicas (SAC)-D, Aquarius is NASA’s first satellite instrument specifically built to study the salt content of ocean surface waters. Salinity variations, one of the main drivers of ocean circulation, are closely connected with the cycling of freshwater around the planet and provide scientists with valuable information on how the changing global climate is altering global rainfall patterns. The salinity sensor detects the microwave emissivity of the top 1 to 2 centimetres (about an inch) of ocean water – a physical property that varies depending on temperature and saltiness. The instrument collects data in 386 kilometre-wide (240-mile) swaths in an orbit designed to obtain a complete survey of global salinity of ice-free oceans every seven days.” According to a new report on desalination in California Desalination is the removal of salts from saline water (brackish or seawater) using distillation or membrane separation technologies in most cases Current desalination technologies produce a toxic concentrated brine discharge that contains all the salts and dissolved solids along with process chemicals. Putting the brine “cocktail” back into the ocean damages the marine environment and runs counter to the environmental goals of the state. The brine creates extensive damage in the ocean in areas sometimes called dead zones. The damage affects the environment, the economy, and the quality of life of the neighbouring areas on land and off shore. Desalination is receiving increased attention as a means for addressing the water supply challenges of California. The state’s growing population, much of which is located in semi-arid regions, periodic droughts, and other water demands create pressure on existing water supplies and strong incentives to find new ones. (California Desalination Planning Handbook, Dept. of Water Resources, 2008, p.1) With the state’s 3,427 miles of Pacific coastline, (CA Water Plan, 2009, Volume 2, Strategic Resource Management, Chapter 26, Water‐Dependent Recreation. 26‐5) desalination of sea water is a reasonable response to the need for a reliable supply of more potable water—if it can be done without environmental damage. New desalination technologies exist that produce no brine (and no concentrated brine cocktails). They should be chosen as best available technology (BAT) in the future. The California report says: “Consequences of all aspects combined
The brine cocktail damages many life forms - plant and animal; adults, larvae, and eggs. It kills some outright. It prevents reproduction for some. It impedes growth and thriving for some. And the damage can happen at only slightly elevated levels of concentration. The hypoxic brine and chemical mixture is like plastic wrap suffocating the organisms living on the sea floor. Fish can swim away to better water conditions. Plants, eggs, larvae, and stationery or slow moving animals like coral, clams, and crabs cannot. In a comprehensive review of published studies about the impacts of desalination plant discharges, David A Roberts and team reviewed 8 field studies and 10 laboratory experiments that examined a range of salinities and a variety of organisms from waters in the US and Spain. They concluded that experiments in the field and laboratory clearly demonstrate the potential for acute and chronic toxicity, and small-scale alterations to community structure following exposures to environmentally realistic concentrations of desalination brines. The observed effects of the tests in the study mentioned above included fertilization, germination, growth and development, and mortality on seven organisms. The study was focused on the effects of several brine concentrations and used brine prepared in the laboratory or taken from an RO plant discharge. It did not look at the effects of the chemical additives or exposure over long terms. Even so, it found effects over limited time periods on several species at some state of development and varying concentrations. For many marine invertebrates the larvae are especially susceptible to brine concentrations.” Both energy and water are increasing in demand as the population grows and it is critical to choose the right type of technology to sustain such a growth. Wrong choices made due to popularity or quick fixes will lead to long term consequences. Desalination with zero liquid discharge should be a mandatory so that large multinational companies will at least spend some funds on R&D towards achieving such a goal. Otherwise it will continue to be a “business as usual”. The author recently won a water challenge from GE -Statoil and you can view it in the following link ; http://gereports.com.au/post/25-05-2016/freeze-one-man-instantly-solves-the-world-s-dirtiest-water-problem

Tuesday, August 25, 2015

Production of Caustic soda by desalination of sea water with fresh water as by-product


There is a great deal of misconception about desalination of seawater and the word ‘desalination’ is taken literally as a method of separating fresh water from seawater but not the separation of salt from seawater. The main focus here is only about recovery of fresh water from seawater or from any saline water sources but not salt. In fact separation of salt from seawater is also known as desalination or desalting. The reason for this misconception is because fresh drinking water is in demand and people are concerned only with fresh water and not the salt. There is a huge demand for fresh drinking water all over the world. Increasing population, large scale usage of fresh water by industries, pollution of fresh water by domestic and industrial effluents, failure of monsoon or seasonal rains due to climate change are some of the factors that contributes to water shortage. There is also a demand for water by agriculture industry both in terms of quality and quantity. Bulk of the ground water is used as a main source of fresh water by agriculture industries in many countries. But sea water also contains number of minerals or salts which have greater economic and commercial value. In terms of quantity their presence is small, only 3.5% and the rest 96.5% is fresh water. For example Chemical industries such as Caustic soda and Soda ash plants use salt as their raw material. But they also use demineralized water to dissolve salt to produce brine which is their feed stock. Therefore Chemical plants are the largest users of seawater in terms of salt as well as fresh water. Power plants mainly located on seashore also use large quantity of demineralized or desalinated water for boilers and for cooling towers. Sea is now becoming a great source of fresh water as the inland water supply is becoming scarcer due to dwindling water table by drought or flooding by too much rains, pollution by industries etc. In earlier days seawater was the only source of common salt known as Sodium chloride produced by solar evaporation. Bulk of the salt is till used by this method. Therefore it is logical to locate a chemical plant and a power plant side by side so that seawater can be utilized efficiently. CEWT (Australian company) has developed a new desalination technology called ‘CAPZ desalination technology’ that can generate fresh water as well as Sodium chloride brine simultaneously which is suitable for Caustic soda/Soda ash production. They can integrate such a facility with a skid mounted Chlorine plant of smaller capacities. This plant can generate large volume of drinking water (WHO standard) as a by-product that can be supplied to municipalities and agriculture industries. Locating large scale solar salt pans near such a facility will be a problem because it requires a huge area of arid land with good wind velocity and it takes nearly a year to harvest the salt. Using CAPZ desalination technology one can generate saturated Sodium chloride brine of 315 gpl concentration as well as fresh drinking water directly from seawater. The brine is purified to meet the specifications required by membrane Electrolysis for the production of Caustic Soda. The same brine can also be used for the production of Soda ash using Solvay process. It is no longer necessary to produce brine from solar salt. Solar salt requires vast area of arid land with good wind velocity and least rain fall and large manual labour force to work under harsh conditions; it is a very slow process and takes almost a year to harvest the salt, which is full of impurities and requires elaborate purification process during the production of Caustic Soda. Such purification process generates huge volume of solid waste for disposal. Chlor-alkali industry is one of the most polluting industries in the world. In fact these impurities can be converted into more value added products such as recovery of Magnesium metal or recover of Potassium salts. CAPZ technology is developing a ZLD (zero liquid discharge) desalination process where the effluent containing the above impurities such as Calcium, Magnesium and Sulphates are converted into value added products. By recovering more such salts from seawater one can recover additional fresh water. Therefore desalination of sea water is now emerging as an integral part of Chlor-alkali industry. By such integration Chlor-alkali can become a major player is meeting fresh drinking water of a nation. By careful integration and co-location of a desalination plant, Caustic soda plant, Food and pharmaceutical grade salt plant and a power plant on a sea shore will be a win situation for everybody involved. Let us take a specific case study of setting up a Caustic soda plant, a captive power plant and a desalination facility. A typical skid mounted Chlorine plant will have the following configuration: Capacity of Caustic Soda: 50.7 Mt/day (100% basis) Capacity of Chlorine : 45.00 Mt/day (100% basis) Hydrogen production : 14,800m3/day (100% basis) A typical usage of Vacuum salt for such skid mounted Chlorine plant will be about 76.50 Mt/day with a power consumption of 2.29 Mwhr/Mt of NaOH (100%). A captive power plant of capacity 200Mw will be able to supply necessary power for both Desalination facility as well as Caustic soda plant. The CAPZ desalination facility can supply a saturated sodium chloride brine (315gpl concentration) 245 Mt/day and 9122 m3/day of fresh drinking water from the desalination plant. This water can be used for boiler feed in the power plant. Surplus water can be supplied as drinking water meeting WHO specifications.
The Hydrogen gas the by-product from caustic soda plant with capacity of 14,800 m3/day can be used to generate clean power using a Fuel cell. The power generated from Fuel cell will be about 20 Mwhr/day that can be supplemented for the Caustic soda production thereby reducing the power consumption from 2.29Mwhr to 1.46 Mwhr/Mt of NaOH (100%) By careful integration of a large (ZLD) desalination facility with caustic soda plant and power plant it will be possible in future to generate a clean energy using Hydrogen, a by-product of Caustic soda plant and solar thermal plant to produce chemicals in a clean and environmentally sustainable manner. For further information on CAPZ technology, please contact ahilan@clean-energy-water-tech.com.

Wednesday, July 4, 2012

Energy,water and global warming


At the outset it may sound odd but in reality water and energy are two sides of the same coin and both industries have a great impact on global warming.We take for example, power generation industries. Two basic requirements for any power plant are fuel and water. It does not matter what kind of fuel is used whether it is a coal based power plant, liquid fuel based plant like Naphtha, and gas based plants using piped natural gas or LNG. We will consider only power generation involving conversion of thermal energy into electrical energy. Currently more than 80% of power generation in the world is based on thermal power including nuclear plants. All thermal power plants use steam as the prime motive force to drive the turbines, gas turbine is an exception but even, in gas based plants the secondary motive force is steam using waste heat recovery boilers, in combined cycle operations. The quality of water for conversion into steam is of high quality and purer than our drinking water. The second usage of water is for cooling purpose. The water consumption by power plants using once through cooling system is 1 lit/kwhr, and by closed circuit cooling tower, it is 1.7lit/kwhr. Only about 40% power plants in Europe for example use closed circuit cooling towers and the rest use only ‘once through’ cooling systems. The total power generated in 2010 by two largest users US and China, were 3792Twhrs and 3715 Twhrs respectively. The total world power production, in 2008 was 20,262 Twhrs, using following methods. Fossil fuel: Coal 41 %, Oil 5.50%, Gas 21%, Nuclear 13% and Hydro 16%.Renewable: PV solar 0.06%, PV thermal 0.004%, Wind 1.1%, Tide 0.003 %, Geothermal 0.3%, Biomass &others 1.30%. (1Twhrs is = 1,000,000,000 kwhrs)(Ref: Wikipedia). The above statistics gives us an idea on how much water is being used by power generating plants in the world. Availability of fresh water on planet earth, is only 2.5% (96. 5% oceans, 1.70% ground water, 1.7% glaciers and ice caps, and 0.001% in the air, as vapor and clouds).The world’s precious water source is used for power generation, while millions of people do not have water to drink. The cost of bottled drinking water is US$ 0.20 /lit, in countries like, India. This situation is simply unsustainable. The prime cause of this situation is lack of technology to produce clean power without using water. The power technology we use today is based on the principle of electromagnetism invented by Michael Faraday in the year 1839. That is why, renewable energy is becoming critically important at this juncture when the world is at the cross road. Many countries are now opting for seawater desalination to meet their water demand. Desalination again is an energy intensive process. For example, 3-4 kwhrs of power is used to desalinate 1 m3 of water. This power now comes from fossil fuel fired thermal power plants, which are often co-located with desalination plants, so that all the discharge from both the plants can be easily pumped into the sea. Since the world is running out of fresh water, we have to look for attentive source of water. In countries like India, the ground water is being exploited for agricultural purpose and power generation and the ground water is getting depleted. Depleting water resources is a threat to agriculture production especially when countries depend only on monsoon rains. Unabated emission of greenhouse from fossil fuel power plants and transportation causes globe to warm. Draught and water scarcity threatens food security. It is a vicious circle. Recent delay in onset of monsoon rains in India have caused grave concern for Government and the people of India. Shortage of power and water has compounded the problem for farmers and suicide rate among the farmers is increasing at alarming rate in India. “Globally, this seems to be one of the worst summers in recorded history. The global average temperature for May was the second hottest ever since 1880 - the year records were first compiled - US National Climatic Data Centre (NCDC) has said. Only 2010 witnessed a worse May. The NCDC said such a hot May was never recorded in the northern hemisphere. No scientist will pin it on human-induced climate change - it is scientifically untenable to do so - but many affirm that these extreme weather phenomena is along predicted lines of rise in global temperatures For India, the looming possibility of El Nino dulling the monsoon rains in July-August only means things could get worse. There is half a chance that the El Nino phenomenon will pick up intensity and hit the tail of the monsoon. Thirteen of the 20 times El Nino has been recorded, it has dimmed the intensity of the monsoon, causing widespread drought. Already, the northwest region of India has suffered a rainfall deficit worse than the rest of India. But the misery of rising heat is being felt worldwide with "normal weather" systems in disarray. If large areas of the western Himalayas in Uttarakhand have suffered raging forest fires, so has the US - more than 8 lakh hectares have been engulfed in flames. The March-May period for the US has been the hottest ever. Brazil is in the midst of its worst drought in five decades with more than 1,000 towns suffering. Heavy downpours and unheard of hail has hit China and flash floods have ravaged crops in Ethiopia. The Eurasian snow cover extent has been recorded at its smallest ever for the month of May since such records were maintained for the first time in 1967. The cover was 2.67 million sqkm below average in May,theUSNCDCsaid. The southern hemisphere, where winters prevail at the moment, too has been recording extremes like never before. The Australian winter has been exceptionally cold, with the fifth coolest winter minimum temperature in over half a century of record keeping. The Antarctic sea ice extent has gone above the 1979-2000 average. In contrast, the Arctic sea ice recorded a much smaller than average extent for the same period”. (Ref: The Economic Times). The global warming has caused many natural disasters such as recent bush fires in Colorado springs in US destroying more than 300,000 houses and heavy storms in Washington causing power black outs for days together in sweltering heat. No country is immune to global warming and sea level rising. How the consequences of global warming will manifest in different forms affecting human beings and other lives is yet to be seen in years to come. That is why distributed energy systems using Hydrogen as an alternative fuel is an important step towards sustainability. One can generate Hydrogen from water, using renewable energy source like solar or wind, and store them for future usage. The stored Hydrogen can be used to generate power, as and when required, at any remote location, even where there is no grid power. The water is regenerated during this process of power generation using Fuel cell which can be recycled. There is no large consumption of water and there is no greenhouse emission. It is a clean and sustainable solution. The same stored Hydrogen can also be used to fuel their cars in the near future!

Wednesday, May 2, 2012

Water shortage drives global warming


A safe and clean water is becoming a scarce commodity in many parts of the world. With growing population and rapid industrialization, the demand for water has increased dramatically. This in turns pushes the demand for energy and fossil fuels resulting in further increase in global warming. According to WHO (World Health organization) specifications, a clean and safe water should be free from pathogenic organism such as bacteria and virus, and also the TDS (Total dissolved solids) levels should be below 500ppm (parts per million). Unfortunately such quality water is not readily available from surface or ground water. The water stored in catchment area for supply of drinking water to cities requires certain chemical and biological treatments before it can meet WHO specification. In many smaller cities especially in developing countries such treated drinking water is not available. NASA’s Gravity Recovery and Climate Experiment Satellite or GRACE orbiting earth in tandem, two satellites are able to measure the water storage on ground and below across the world. The NASA data shows that most of area in Northern India will be facing a severe shortage of water in the near future because farmers are pumping ground water at an alarming rate. The ground water is getting depleted faster than it is being replenished. The water table has gone deeper and deeper and many of the pumps they used five to ten years ago cannot pump water anymore because the water levels have gone so deep. States like Punjab, supposed to be ‘wheat bowl of India’ are facing water shortage. Farmers who have used 100 feet bore well are now digging their bore well up to 900 feet. To make the situation worse, a large number of coal fired power plants are licensed to meet the increasing power demand in India. Both quantity and quality of water has a direct impact on energy demand and global warming. The rainwater which replenished the ground aquifers are unable to match the water sucked by these pumps. About 114 million people living in Rajasthan, Punjab, and Harynaya including the capital city of Delhi are facing water shortage. The likely alternative for these states is to desalinate the seawater from the west coast of India and pump them all the way to Delhi, which is thousands of kilometers from the coast. The increasing economic growth of India has increased the demand for power, often based on coal. Power industry is one of the largest users of water. Plants located on coastal are able to use seawater for their ‘once through’ cooling system and for boilers. But the plants located inland have to use only surface water like rivers. They cannot use ‘once through’ system, but use a closed circuit cooling systems where they have to store large pool of hard water. It is a vicious cycle. Water shortage increase the demand for power and power shortage increases the demand for water. Desalination is the only alternative but it is a very energy intensive and a costly solution. Changing climate, global warming, deforestation, and water shortage are ominous signs of Nature’s fury against human greediness. When countries like Australia set up their largest desalination facilities, the country experiences the heaviest rains in decades with flash flooding in many parts, making politicians wonder whether their water management decisions are right. Unfortunately Science cannot solve our greediness only human beings can learn lessons from Nature and take right decisions.

Monday, March 26, 2012

The changing Chemistry of our oceans

Seawater is the largest source of fresh water as well as the source of Hydrogen energy.However; seawater cannot be used directly for these applications and it requires further treatment. Seawater contains a number of dissolved salts and the TDS, total dissolved solids, of seawater is about 35,000ppm (parts per million).The commonly used industrial desalination process is by RO (reverse osmosis) as well as by multistage flash distillation (MFD). Both these processes are energy intensive.RO process requires electrical energy and MFD requires thermal energy. Most of the countries in Persian Gulf use desalination process to convert seawater into drinking water as well as industrial water. These oil rich countries depend on the desalinated seawater as their main source of drinking water supply. In the desalination process by RO, the TDS level of seawater is reduced from 35,000ppm to 500ppm, meeting the WHO (World Health Organization) specifications for drinking purpose. The advantage with reverse osmosis process is it can remove even the smallest bacteria and virus, during the desalination. The water can further be disinfected by the injection of Chlorine before distributing for drinking purpose. The majority of desalination plants use RO process because it is economical. There is a worldwide shortage for safe drinking water and more and more SWRO plants are coming up in various parts of the world. The technology of RO has advanced so much that the cost of desalinated seawater can compete with surface water in many parts of the world, especially in Gulf region where the energy cost is low. The rapid increase in population and industrial growth has created a greater demand for fresh water. In conventional SWRO process, only 35-40% of fresh water is recovered and the balance 60-65% is discharged back into the sea as a highly saline brine, with TDS levels exceeding 65,000pm, almost double the salinity of seawater. Similarly most of the power plants located on sea coasts are using seawater for cooling purpose. In once through cooling system, the seawater is circulated into the power plant to condense steam in turbines and returned back to the sea. The temperature and salinity of the returning water into the sea is always higher than the intake water. Some oceanographers feel that such slow increase in salinity of seawater affects the temperature of the sea and the climate. However, discharge of highly saline brine into the sea has become routine and EPA (Environmental and Pollution Authority) of various countries routinely approve such discharge, claiming it does not affect the marine life significantly. The environmental impact study conducted in one country is routinely followed by many countries and invariably conclude that such discharge has a very little or no impact to the environment. Human beings are concerned only with their environment and not with the marine environment where variety of marine species live. Our oceans have been heavily polluted from the time of industrial revolution by oil spills, toxic industrial effluent discharges, desalination and power plant discharges. The TDS levels of seawater in Gulf region has considerably increased in the past few decades. The TDS levels are about 50,000 ppm against conventional levels of 35,000PPM.The oceans are acidified by absorption of excess carbon dioxide from the atmosphere due to greenhouse gas emissions. The power required to desalinate seawater is directly proportional to the osmotic pressure of seawater. The osmotic pressure increase as the TDS level increases, which in turn increases the energy consumption by desalination plants. A recent report from US government says that fresh water will become a serious issue after a decade and even wars may be waged between countries for the sake of fresh water. The human activities not only cause global warming but also changing the chemistry of our oceans. Steadily dwindling fish population is a clear indication of changing chemistry and biology of our oceans. In the absence of a proven scientific evidence to show that human beings cause these changes in the ocean, we will carry on our business as usual until we reach a point of no return. If you add salt to the water, it will not boil at 100C at 1 atmospheric pressure but slightly at a higher temperature. It is high school physics. When the salinity of the ocean increases from 35,000ppm to 50,000ppm, does it not affect the evaporation of the sea, which condenses into a cloud and come back as a rain? Does it mean there will be less precipitation in the future? Even if the ocean is under constant circulation, the overall salinity level keeps increasing.

Wednesday, March 14, 2012

Wind energy-that can save islands

Wind is a potential source of renewable energy, especially for islands with an average wind velocity of 5mts/sec and above. Many islands in pacific ocean have some common problems like sea erosion, shortage of power and drinking water. These small islands with little population are fully depending on diesel fuel. In fact their life depends on diesel fuel and any increase in price significantly affects their daily life. Their main source of income is only by fishing and they live day to day. I had a personal experience of visiting a small island off Port Moresby in Papua New Guinea. They call it Daugo Island or ‘Fisherman’s island’ with population of less than 700 people. It is about 4.5km wide and 2km long. It is a coral atoll pushed out of the sea. One can take stroll on the beach and it is one of the most beautiful experiences one can have. It gives a feeling that you are far away from the rest of the world. There is a small abandoned World War II Airfield. The people in the island do not have any electricity or drinking water, and most of them are fishing on small boats. Their boats are fuelled by diesel. They will go to nearby city of Port Moresby and sell their fish and with that money they will buy drinking water and diesel in cans, and return to the island. This is their daily life. Such an island is an ideal location to set up a wind turbine and a small sea water desalination plant, that can easily solve their problem of water and power. The trade wind from the Coral Sea in the island of Papua New Guinea blows almost 7-8 months in a year and their wind velocity averages 7 mts/sec. Two wind turbines of each 250 kW capacity and a small seawater desalination SWRO plant of capacity 15,000lts/day will be sufficient to solve their problems. The desalination plant will consume about 4.5Kwhrs/m3 of water generated. About 2000 kwhrs/day of power can be supplied to the village, each family consuming about 2.85 kwhrs/day for 6 hours/day and also for the desalination plant. The system will generate surplus power. Renewable wind energy is the best option for such islands to generate on-site power and also to desalinate seawater for supply of drinking water. With increasing global warming and sea level rising, these small island face seawater intrusion and inundation. Many islands are slowly disappearing into the vast sea. Moreover, these islands are the most vulnerable to the fluctuating diesels prices and they are walking on a tight rope.Industrialised countries with an average power consumption of several kilowatt hours per day are crying foul about rising energy cost while people in such small islands barely manage their food and shelter after paying for the diesel. Recently the Government of Maldives conducted their cabinet ministers meeting under the sea, to showcase their plight due to sea level rise caused by global warming, to the rest of the world. Small islands can cry loud but their voice is muffled by roaring sea, while rest of the world carries on their business as usual.