Google analytics tag

Showing posts with label Global warming. Show all posts
Showing posts with label Global warming. Show all posts

Wednesday, November 24, 2021

Role of Hydrogen in decarbonisation

Hydrogen has been used as a reducing agent in chemical industries for decades but its usage as a fuel is a recent development. It has been demonstrated that it can be electro-chemically combusted using air as an oxidant to generate electricity and heat with only water as by-product. The result? Fuel cell was born. Japan has demonstrated that Fuel cell can be successfully used for transportation applications substituting fossil fuels. The first alkaline fuel cell was used by NASA which was in Gemini spacecraft which was run 1000 hours to demonstrate the long-duration functioning. A fuel cell is like a battery continues to generate current as long as the reactants are supplied. Currently this fuel cell is in Museum. Later Honda of Japan successfully demonstrated the first fuel cell car using compressed Hydrogen around the beginning of this new millennium. It is more than two decades since the fuel cell car was introduced. But it has not been commercially deployed on large scale till date. Though it was a clear demonstration that Hydrogen can substitute gasoline (petrol) successfully and eliminated Carbon pollution emitting only just water vapour and with zero noise pollution. Fuel cell without any mechanical components unlike IC engines was able to generate DC current that runs the propulsion. Unfortunately, it could not substitute IC engines run with gasoline due to high initial cost and lack of filling stations around the world. Though emission is only a harmless water vapour (as being claimed) it is a more potent greenhouse gas (GHG) than CO2 and in combination of CO2 present in the atmosphere it is likely to enhance the global warming by “feedback” effect shown by NASA. Too much water vapour in the atmosphere will have devastating consequences to climate change. “Water vapour feedback can amplify the warming effect of other greenhouse gases, such that the warming brought about by increasing CO2 allows more water vapour to enter the atmosphere…And since water is itself a greenhouse gas, the increase in humidity amplifies the warming from CO2”- NASA. It is unlikely fuel cell transportation will substitute IC engines soon. Electric cars too have their own issues. In either case availability of electricity with zero Carbon emission is the key, without which the consequences of global warming and climate change will remain the greatest threat to the planet earth and the humanity. The only potential role for Hydrogen will be continued to be a reducing agent in a typical redox (reduction -oxidation) reactions in power generation. For example, Carbonaceous fuels such as coal, oil and gas are combusted to generate thermal energy which in turn converted into electricity using IC engines, steam and gas turbines. But bulk of the heat is wasted as a waste heat (potentially contributing to atmospheric warming) achieving low electrical efficiencies with unabated emissions of CO2 in the atmosphere. In such a dire situation the potential use of Hydrogen can only be a reducing agent to reduce oxidized Carbon (CO2) into CH4 to be recycled once again as a fuel. By this way the fossil Carbon can be recycled indefinitely while Hydrogen can be generated from water using a renewable energy source. The trade-off will be between whether renewable energy can be stored in batteries and used as direct electricity or use renewable Hydrogen to be used as reducing agent for decarbonising fossil fuel emissions. Hydrogen using renewable energy will be expensive, but it has a potential to be used a renewable synthetic methane gas (RSMG) for base load power generation on long term basis. Renewable energy using battery storage will be attractive in short term, but it cannot be used for baseload power generation and for larger capacity plants due to high cost of batteries beyond a point. With current power generation capacity exceeding 65% from fossil fuel there is no easy solution to achieve zero emission by 2050. The one and only option will be to use renewable Hydrogen to generate RSMG which can be used as fuel of the future with a potential for Carbon recycling. This is the only way the world has a hope to achieve zero emissions by 2050. US government should impose price on Carbon while subsidising renewable Hydrogen for the purpose of converting it into RSMG. In the beginning RSMG will be more expensive than natural gas but it will eventually substitute natural gas as alternative fuel to generate baseload power with zero emissions. The key will be large scale deployment of renewable energy and reduction of cost of renewable energy to less than $20/Mwh.

Sunday, October 31, 2021

ZERO EMISSION TECHNOLOGY BY CIRCULAR ECONOMY

World has been generating electricity using fossil fuels for decades while emitting CO2 into the atmosphere. It has always been a base load power which means generating electricity 24 x7 for 365 days in a year. The name plate capacity of the plant would indicate the power generation capacity. For example, a name plate capacity of 100 MW means, it is capable of generating 100 Mw electricity in an hour or 2400 Mwh in a day or 720,000 Mwh in a year working 300 days/yr. With global warming and changing climate there is a sudden awareness about the warming potential of CO2 emission and the necessity to eliminate such an emission. If we have to continue to generate electricity the way we had been doing in the past but without any CO2 emission then there is only one option; that is to recycle CO2 again in the form of a fuel (not necessarily a solid fuel) but a gaseous fuel in the form of RSMG (renewable synthetic methane gas). CEWT has been developing this circular technology known as CRT (Carbon recycling technology) for the past few years. That means it can open up a new method of electricity generation using a fossil fuel such as coal or gas using conventional equipment such as steam or gas turbine to generate a base load power, yet, with zero emission. This is precisely the technology the world needs right now. It is opening up a new possibility of using conventional fuel, existing infrastructure and yet capable of generating a base load power with zero emission. How wonderful is that? CRT uses Carbon that is already existing in air and sea which has accumulated over these years since the industrial revolution and a renewable Hydrogen (green hydrogen) to synthesise RSMG (renewable synthetic methane gas). This proposal uses CO2 extracted from the sea using special type of membrane using a desalination technique that allows to recover CO2 economically in a pure form. The process allows recovery of both CO2 as well as Hydrogen (green) from seawater simultaneously. It also generates pure Oxygen as a by-product for further Oxy combustion of natural gas. Both CO2 and Hydrogen recovered above can be used to synthesise RSMG using a proprietary system using proprietary catalyst. The system generates not only RSMG but also excess heat from exothermic reaction which can be used to generate additional power using conventional steam turbine. RSMG can be used as fuel substituting natural gas using super critical CO2 gas turbine to generate electricity 24 x 7 as we had been doing for decades. The flue gas is separated into water and pure CO2 by condensation while CO2 is recycled to RSMG reactor thereby completing the cycle with net zero CO2 emission. The same process can be used to generate a base load power using even coal by simply gasifying coal with pure Oxygen generating Syngas and running a gas turbine with syngas instead of RSMG. However the resulting flue gas has got only water and CO2 which can be separated as before and CO2 is recycled into the system to synthesise RSMG and the cycle completes. It is a perfect example of a circular economy the world needs right now. The advantage of this technology is the fossil fuel can be completely eliminated by simply recycling the Carbon derived either from the sea or from the coal Indefinitely using renewable Hydrogen. Even water used in the system is completely recovered and recycled with zero emissions and zero liquid discharge. CEWT is willing to license the technology to all potential customers all over the world. All you need is a site on the seashore with good sunshine and wind and we will show case the technology generating a base load power with zero emission and with zero fossil fuel! Countries still heavily depending upon coal as a primary source of fuel such as China,India, South Africa,Indonesia and others can use the above technology by retrofitting the above system and substituting coal with RSMG and eliminate coal completely! These countries can continue their base load electricity generation using Carbon negative fuel RSMG substituting coal in the same plant.This will allow those countries to generate their own fuel directly from seawater instead of depending on imported fuels. The above technology will allow seawater to absorb more CO2 from the atmosphere reducing CO2 in the atmosphere.It is a win situation for all the stake holders and the environment! when the world is desperately looking for a lasting solution. It is absolutely clear from the above, fossil fuels and zero emissions are completely two different issues depending upon the source of Carbon and Hydrogen. If you know the 'art', one can generate a base load power with zero emissions even by using coal and even without burying CO2 deep underground as suggested by CCS or CCUS methods. In my personal opinion, CRT is the only technology that can comprehensively address all the problems of global warming and climate change that is being debated in COP 26 meetings. Yet none of the companies have offered this solution because it will stop the usage of fossil fuel for good. After all, Greta Thunberg may be right in calling COP26 is just blah blah blah. I thanks all my followers including Linkedin followers now excedding 19 million as shown above.

Saturday, September 4, 2021

What future holds for energy and climate?

Energy industry is at a crossroad. It must now find a new direction to address the climate issue while to continue to supply energy to the world. The options are very clear. It can find new ways and means to genuinely address some of the mistakes of the past by inventing new methods to address the problem irrespective of the cost involved because time is not in our favour. Alternatively, one can redirect the issue using new terminologies and jargons and temporarily buy some time till finding an alternative and lasting solution to the problem. The first option will take time and cost more, and the second option may not take time and cost less. It seems most of the companies are choosing the second alternative. But how? Renewable energy is defined as “a source of energy that is available from the nature that can be constantly replenished”. This will guarantee the sustainability. But we are used to Carbon based fuels and technologies and therefore we also need a renewable Carbon that can substitute fossil fuels so that existing technologies for power and transportation can be used. Biomass is also derived from plants and animals like fossil fuels, but it is different in terms of time scale, and it can be replenished quickly unlike fossil fuels. It is basically made up of Carbon, Hydrogen and additionally oxygen, like fossil fuels such as coal, oil and gas but free from sulphur. Therefore, one can use the same technology such as combustion, gasification and pyrolysis etc and convert a biomass into energy, chemicals and fuels while claiming them as “renewables”. It will require oxy-combustion and gasification methods and unfortunately usage of pure Oxygen will be inevitable.Therefore, both Carbon as well as Hydrogen derived from biomass becomes “Green” and “renewable”. In addition "Green Hydrogen" using renewable energy sources such as solar and wind by water electrolysis will help decarbonisation by capturing and converting CO2 emissions into a Syngas. It requires a steep fall in the cost of renewable electricity to less than $20/Mwh and Carbon emission to be taxed at least @ $250/Mt to discourage fossil industry. Once we establish green and renewable Carbon and Hydrogen then it is only a matter of generating a syngas, combination of Hydrogen and Carbon monoxide with various ratios to synthesis various chemicals including bio crude oil that leads to refineries to produce petrol, diesel and aviation fuels. We will be back into the game but with different brand called “Green and renewable”; it is "an old wine in a new bottle" Everybody is happy and politicians can now heave a sigh of relief and feel comfortable. One can also use “blue hydrogen’ as a mix to green hydrogen and synthesis various downstream chemicals such as Ammonia, urea etc. Thus they can use them to decarbonise the fossil economy. In either way there is still an issue of CARBON EMISSION that needs to be addressed. They may claim biofuel as Carbon neutral, but it will not stop the increasing concentration of GHG into the atmosphere or climate change. Therefore Carbon tax will be inevitable. Bioenergy and renewable energy may increase the sustainability but will not address the issue of global warming and climate change. Nature does not discriminate between ‘bio-carbon’ and ‘fossil carbon’. Only “Carbon Recycling Technology” can address the problem of global warming and climate change. The simplest method will be to to collect CO2 emission from all petrol and diesel engines in a liquid form using a retrofittable device in the vehicle and convert them in a centralised facility to Syngas using renewable Hydrogen .The syngas can be converted into renewable crude using F-T reaction hat can be processed in a refinery for recycling into petrol, diesel and aviation fuel so that we can eliminate technologies such as large batteries and Fuel cells. By this way we can ensure the CO2 level in the atmosphere is stabilised and existing infrastructures are utilised. The availability of biomass for a radical change will be an issue especially in Asia where growing population requires more land for agriculture and deforestation is a common problem. Perhaps we need completely a new electricity generation technology that can "drive electrons to flow in a super conductor" and a magnetic storage using a cryogenic fluid. Unfortunately not many researchers are working in this direction.

Friday, April 23, 2021

WATER AND ENERGY ARE TWO SIDES OF THE SAME COIN

 




I always believed one can create energy from water and water from energy. Ancient Hindus believed water comes from fire and fire comes from water, two fundamental building blocks out of five elements that are necessary for Creation.

Water (H2O) is made up of two atoms of Hydrogen and one atom of Oxygen. The structure itself is an absolute beauty because it contains both reductant and oxidant tied up inseparably in such a way it requires enormous energy to separate them. Individually Hydrogen forms an explosive mixture with air on combustion. People familiar with Oxy Hydrogen will know such a stoichiometric mixture of Hydrogen and Oxygen in gaseous form by water electrolysis generate a flame that can cut an iron piece but leaves water on condensation. Current methods of Electrolysis using PEM (proton exchange membrane) can not only split water into Hydrogen and Oxygen but also separates them simultaneously into two different gases. Fuel cell just reverses the above reaction by combining Hydrogen and Oxygen generating electrical power and heat as a by-product. The fundamental facts about water and energy remain the same for millennia.

We are now facing a new challenge of global warming and climate change that is supposed to be caused by the unabated emission of CO2 into the atmosphere by the combustion of fossil fuels. The world is now gearing up to achieve net-zero emission by 2050. In my opinion, it is not such a big challenge, but the world has neglected emissions for too long. The science of electricity generation using electromagnetism is far from perfect in the sense it failed to consider the emissions by combustion of fossil fuels. The simple solution is to reduce the oxides of Carbon back into Carbon so that there will be zero-emission. Unfortunately, we never used pure Oxygen for combustion but air because it is readily available and cheap to use. But it generates not only CO2 but also NOx, NO2, H2S, SO2, etc. all contributing to air pollution which is now affecting the world by way of global warming and climate change. The CO2 level in the atmosphere has now reached 415 ppm which is only part of the anthropogenic CO2 emission since the industrial revolution. About a third of it has been absorbed by the ocean thus acidifying the seawater. The pH level of the sea is slowly but steadily decreasing making it more acidic. Thanks to the enormous buffering capacity of the sea and such a change are hardly noticeable. But it will soon change the chemistry of the water. It is a complex situation with the changing chemistry of seawater due to absorption of CO2, heat, increasing salinity. Sea levels rise due to melting of glaciers, constant discharge of highly concentrated effluent discharges from seawater desalination plants and power plant cooling towers, etc.  Climate modeling in the future will be challenging.

I previously posted an article on “Zero-emission baseload power using only sun and sea”. It has attracted many viewers worldwide especially in my blog/: https://www.clean-energy-water-tech.com.

I have already filed a provisional patent application with IP Australia, and I am in the process of filing an international patent application so that I can secure an IP with a value. The technology is based on a couple of well-proven concepts and it will not be difficult to implement them commercially. A couple of multinational companies has already endorsed my process they are even willing to take part as EPC (engineering, procurement, and construction) contractors.

I am planning to seek donations and contributions from my worldwide audience by way of crowdfunding to secure an IP worldwide so that I can practically contribute my knowledge and experience to address one of the greatest challenges of global warming and climate change.

Please watch this blog and my next article will elaborate on my patented technology.

 CARBON RECYCLING TECHNOLOGY (CRT) also known as RAMANA POWER CYCLE (RPC) FOR A ZERO EMISSION BASELOAD POWER USING ONLY SUN AND SEA.

I invite everyone to contribute by way of donations to my campaign at

  https://readyfundgo.com/?post_type=ignition_product&p=52427.

The funds will be used to seek international patent for my invention as an intellectual property. It will enable me to demonstrate further the invention by installing a 25 Mw baseload power plant with zero emissions using only sun and sea. It is a small beginning for a lasting solution for a net zero emission technology. It will also help reduce ocean acidification and help marine life including corals. It will be the new beginning !

Sunday, December 15, 2019

Can Hydrogen substitute Carbon and avoid catastrophic climate change?


 The answer is most likely NO for the following reasons.
It has been established that man-made GHG emissions mainly by CO2 is causing the globe to warm by a phenomenon known as “Greenhouse gas effect” triggering change in climate. Therefore, many are suggesting Hydrogen as an alternative clean fuel to reduce or eliminate CO2 emission. But replacing Carbon with Hydrogen we will only substitute Oxides of Carbon (CO2) with Oxides of Hydrogen (H2O). But water vapor too is a potent greenhouse gas GHG and it may enhance the warming of the globe by a phenomenon known as Feedback effect as explained by NASA and American chemical society (ACS) by the following references:

 Moreover, Renewable Hydrogen is still very expensive compared to Hydrogen derived from fossil fuel such as coal and gas even though cost of renewable energy has reduced substantially in recent past. By injecting valuable renewable Hydrogen into existing pipeline carrying natural gas one will generate additional issues because of varying physical and chemical properties of Hydrogen and its flammability and explosive nature compared to natural gas. Hydrogen is an unstable atom and readily forms a bond with Oxygen and Carbon and that is why Nature does not produce free Hydrogen. It requires a Carbon backbone. Only an emission free power generation technology can solve the problem of global warming. It is only possible by recycling Carbon (Carbon recycling technology) with the help of renewable Hydrogen and to achieve a circular economy. There is no shortcut.


Friday, May 10, 2019

It is time UN acted on climate change


Carbon emission caused by human beings has become a major issue for our environment and future economy due to changing climate. But there are still few countries who are sceptical about the science of climate change and reluctant to act and refuse to be a part of United Nation’s action on climate change. These countries are either fossil fuel producers such as coal, oil and gas or large economies who have been traditionally depending on usage of fossil fuel for their economy and security. The transition from Carbon economy to non-Carbon economy may not be easier for them in the absence of an alternative technology that can guarantee not only complete elimination of CO2 emission but also efficiency and sustainability. There is a strong political motivation too behind such dithering and they create a fear of slowing economy and large-scale unemployment among the people in the absence of a viable alternative energy source. Therefore, United Nation has an important role to play at this critical juncture of transition to non-carbon economy and save the planet earth from imminent danger of environmental and economic collapse. UN can also stop mass extinction of species and migration of refugees for a better life. UN was successfully able to bring together 174 countries to the negotiating table during Paris climate change conference. However, they failed to reach a unanimous Agreement and announce a concrete action plan to act. They failed to articulate the ways and means of reducing or eliminating man made CO2 emissions in a stipulated time frame. They also failed to bring powerful nations such as USA to the table which made the task even harder. But this situation can be changed if UN is able to articulate a concrete Action plan which is agreeable to all the parties involved. This is possible only if UN can address all the issues involved such as the alternative technology, funding, implementing in a stipulated time frame, measuring and monitoring the progress and achieving the final goal. UN should first be able to create the same level playing field where all Countries can take part equally without any discrimination. It depends completely on focussing the type of technologies to be deployed to achieve the above goals and It should be able to set a specific date to implement such a plan. Currently renewable energy is considered as one of the alternatives along with renewable Hydrogen which can act both as an energy storage and as well as energy carrier. But renewable Energy is intermittent and energy storage has become part of the system. With our limited experience in renewable energy deployment over a decade renewable energy alone Cannot be the solution to address the issue of CO2 emissions. One must estimate the life cycle CO2 emissions of hardware used in renewable energy systems such as PV solar panels, Solar concentrators, wind turbines, storage batteries. Renewable Hydrogen generators, Fuel cells etc. Each of them has their own Carbon footprint that must be incorporated in life cycle assessment. Similarly, even fossil fuel-based power generators such as boilers, steam or gas turbines, pumps and compressors etc too have Carbon footprint that should be assessed. Carbon footprint should be assessed as fixed carbon footprint and variable carbon footprint and then these data should be used to arrive at the Carbon footprint to generate power (tons of CO2/Mwh) Once a life cycle assessment of their Carbon footprint is estimated then it will be easier to rate each technology based on their “Carbon Rating” which will be a measure of their Carbon footprint. The Carbon rating is measured and allocated “number of stars” based on Carbon footprints. Lowest emitting technology will be rated with highest number of stars while highest emitting technologies will get the lowest number of stars. Carbon rating will be a good measure to assess the technology that can be used worldwide. Countries who are reluctant to reduce CO2 emissions will be discouraged to participate in government and private tenders worldwide and exports. Such countries will be treated as “Pariahs” and rejected by consumers due to their low Carbon rating. Technologically advanced countries or companies who can use fossil fuel but with lowest or Zero CO2 emissions will also be able to compete with renewable energy technologies. Carbon Rating will offer everybody the same level playing field. Carbon is the fundamental building block of organic life on earth which is essential for human survival but unabated CO2 emission by human activities is the culprit. I strongly believe Zero Carbon emission can be achieved even while using fossil fuels by constantly recycling CO2 in the form of regenerated synthetic natural gas. It will not only eliminate CO2 emission but also generate synthetic fuel using renewable Hydrogen without any necessity to exploit fresh fossil fuels. Using renewable Hydrogen as a storage medium or as energy carrier may be expensive due to inherent nature of Hydrogen atom. UN can introduce Carbon Rating as a single tool to measure the Carbon footprint of a specific technology with the lowest or Zero CO2 emission worldwide to start with. They should be more proactive in promoting technologies with highest Carbon rating and encourage countries to adopt such measures.

Sunday, November 5, 2017

Carbon Recycling Technology


CRT Carbon Recycling Technology known as “Ramana Cycle” is a new patented concept and system that addresses current problems faced by energy industries with a single solution Current problems: 1.Renewable energy is only a fraction of total energy generated world-wide. Fossil fuel especially natural gas in the cleanest and most widely accepted fuel for base load power generation. However, it emits CO2 a greenhouse gas causing climate change. 2. Electric and Fuel cell cars can eliminate Carbon emission from our roads, but it will dramatically increase the electricity requirement which cannot be met by renewable energy sources alone. Eventually the electricity demand will have to be met by fossil fuels which will sharply increase CO2 emissions in a short span of time thus exacerbating global warming. 3.Grid connected renewable energy has many problems due to intermittent nature of renewable energy such as synchronicity, electronic interface with HT lines, metering etc. There is at least 22% loss while transmitting renewable energy into the grid creating dispatchability issues. Power is transmitted 24 x 7 on HT lines. Solution: CRT addresses all the above issue with a single solution as described below. CRT synthesizes a synthetic fuel CH4, a Hydrocarbon known as SNG (synthetic natural gas) using Carbon from CO2 emissions of gas based power plants and renewable Hydrogen generated from water using renewable energy sources such as Hydro/solar/wind /biomass/ geothermal etc. Once SNG is generated then it can substitute natural gas currently used in power generation. It means one can generate their own SNG and need not depend on oil and gas industries and use conventional gas turbine and generate base load power and transmit using existing transmission lines. This power can be used by electric as well by Fuel cars. There will be a net Zero Carbon emission.The same system can also supply Hydrogen to Fuel cell cars. CRT can be implemented using existing systems supplied by internationally known companies with proven technologies and systems. There are absolutely no commercial risks whatsoever. These systems can be deployed immediately, and they are commercial ready. Each plant is designed specifically based on the capacity, location and purpose.

Saturday, April 23, 2016

Parched land and thirsty farmers surrounded by ocean of water


The climate is changing and the impact of such a change is felt almost in every sphere of life around the world especially in countries like India. ” Erratic monsoon rain patterns have left crops parched, jeopardizing India’s nearly $370 billion agricultural sector and hundreds of millions of jobs. Drought conditions are crippling vast swaths of India’s farmland as the country faces its driest monsoon since 2009. With more than 60 percent of India’s agriculture reliant on monsoon rains, farmers are highly vulnerable to changes in rainfall patterns and rising global temperatures, the Indian Council for Research on International Economic Relations found in a report” according to the International Business Times. The situation in Australia is no different from India, both surrounded by ocean of water yet no water to irrigate or even to drink. Many scientific studies have clearly highlighted the close relationship between warming earth, increasing salinity of seawater and the climate change. But new coal fired power plants and seawater desalination plants are set up almost every year in these countries. Both greenhouse gas and the increasing salinity of seawater will only contribute to intensify further warming of the earth. There is some awareness about the global warming by GHG but there is no awareness about the increasing salinity of seawater. One of the largest desalination plant set up in the state of Victoria in Australia is idle for so many years yet unable to supply water to struggling farmers in the country Victoria. In a way it is a blessing in disguise because it would have otherwise discharged billions of cubic meters of RO concentrate with toxic chemicals into bass strait. California law requires that any “new or expanded coastal ... industrial installation using seawater” must utilize “the best available site, design, technology and mitigation measures feasible ... to minimize the intake and mortality of all forms of marine life.” (California Water Code section 13142.5(b) The following excerpts from NASA highlights the close relationship between Ocean salinity and changing climate and rainfall.((http://science1.nasa.gov/media/medialibrary/2013/05/20/thermohaline_assembled) “SALINITY, OCEAN CIRCULATION & CLIMATE Surface winds drive currents in the upper ocean. Deep below the surface, however, ocean circulation is primarily driven by changes in seawater density, which is determined by salinity and temperature. In some regions such as the North Atlantic near Greenland, cooled high-salinity surface waters can become dense enough to sink to great depths. The 'Global Conveyor Belt' visualization (below) shows a simplified model of how this type of circulation would work as an interconnected system. The ocean stores more heat in the uppermost three (3) meters than the entire atmosphere. Thus density-controlled circulation is key to transporting heat in the ocean and maintaining Earth's climate. Excess heat associated with the increase in global temperature during the last century is being absorbed and moved by the ocean. In addition, studies suggest that seawater is becoming fresher in high latitudes and tropical areas dominated by rain, while in sub-tropical high evaporation regions, waters are getting saltier. Such changes in the water cycle could significantly impact not only ocean circulation but also the climate in which we live. 'The Global Conveyer Belt' represents in a simple way how currents move beneath the wind-driven upper ocean. This movie begins by focusing on the North Atlantic east of Greenland, where cold surface waters get saltier due to evaporation and/or sea ice formation. In this region, surface waters can become dense enough to sink to the ocean depths. This pumping of surface water into the deep ocean forces the deep water to move horizontally until it can find areas where it can rise back to the surface. This very large, slow current -- estimated to be on the order of 1000 years to complete a full circuit -- is called the thermohaline circulation because it is caused by temperature (thermo) and salinity (haline) variations. Credit: NASA/GSFC Launched June 10, 2011, aboard the Argentine spacecraft Aquarius/Satélite de Aplicaciones Científicas (SAC)-D, Aquarius is NASA’s first satellite instrument specifically built to study the salt content of ocean surface waters. Salinity variations, one of the main drivers of ocean circulation, are closely connected with the cycling of freshwater around the planet and provide scientists with valuable information on how the changing global climate is altering global rainfall patterns. The salinity sensor detects the microwave emissivity of the top 1 to 2 centimetres (about an inch) of ocean water – a physical property that varies depending on temperature and saltiness. The instrument collects data in 386 kilometre-wide (240-mile) swaths in an orbit designed to obtain a complete survey of global salinity of ice-free oceans every seven days.” According to a new report on desalination in California Desalination is the removal of salts from saline water (brackish or seawater) using distillation or membrane separation technologies in most cases Current desalination technologies produce a toxic concentrated brine discharge that contains all the salts and dissolved solids along with process chemicals. Putting the brine “cocktail” back into the ocean damages the marine environment and runs counter to the environmental goals of the state. The brine creates extensive damage in the ocean in areas sometimes called dead zones. The damage affects the environment, the economy, and the quality of life of the neighbouring areas on land and off shore. Desalination is receiving increased attention as a means for addressing the water supply challenges of California. The state’s growing population, much of which is located in semi-arid regions, periodic droughts, and other water demands create pressure on existing water supplies and strong incentives to find new ones. (California Desalination Planning Handbook, Dept. of Water Resources, 2008, p.1) With the state’s 3,427 miles of Pacific coastline, (CA Water Plan, 2009, Volume 2, Strategic Resource Management, Chapter 26, Water‐Dependent Recreation. 26‐5) desalination of sea water is a reasonable response to the need for a reliable supply of more potable water—if it can be done without environmental damage. New desalination technologies exist that produce no brine (and no concentrated brine cocktails). They should be chosen as best available technology (BAT) in the future. The California report says: “Consequences of all aspects combined
The brine cocktail damages many life forms - plant and animal; adults, larvae, and eggs. It kills some outright. It prevents reproduction for some. It impedes growth and thriving for some. And the damage can happen at only slightly elevated levels of concentration. The hypoxic brine and chemical mixture is like plastic wrap suffocating the organisms living on the sea floor. Fish can swim away to better water conditions. Plants, eggs, larvae, and stationery or slow moving animals like coral, clams, and crabs cannot. In a comprehensive review of published studies about the impacts of desalination plant discharges, David A Roberts and team reviewed 8 field studies and 10 laboratory experiments that examined a range of salinities and a variety of organisms from waters in the US and Spain. They concluded that experiments in the field and laboratory clearly demonstrate the potential for acute and chronic toxicity, and small-scale alterations to community structure following exposures to environmentally realistic concentrations of desalination brines. The observed effects of the tests in the study mentioned above included fertilization, germination, growth and development, and mortality on seven organisms. The study was focused on the effects of several brine concentrations and used brine prepared in the laboratory or taken from an RO plant discharge. It did not look at the effects of the chemical additives or exposure over long terms. Even so, it found effects over limited time periods on several species at some state of development and varying concentrations. For many marine invertebrates the larvae are especially susceptible to brine concentrations.” Both energy and water are increasing in demand as the population grows and it is critical to choose the right type of technology to sustain such a growth. Wrong choices made due to popularity or quick fixes will lead to long term consequences. Desalination with zero liquid discharge should be a mandatory so that large multinational companies will at least spend some funds on R&D towards achieving such a goal. Otherwise it will continue to be a “business as usual”. The author recently won a water challenge from GE -Statoil and you can view it in the following link ; http://gereports.com.au/post/25-05-2016/freeze-one-man-instantly-solves-the-world-s-dirtiest-water-problem

Friday, December 18, 2015

Decarbonizing Planet Earth with Carbon


“The method adopted in Vedanta to impart the knowledge of Brahman is known as the method of superimposition (adhyaaropa) and subsequent negation (apavaada). In the Bhashya, Bhagavatpada says, “The transmigrating self is indeed Brahman. He who knows the self as Brahman which is beyond fear becomes Brahman. This is the purport of the whole Upanishad put in a nutshell. It is to bring out this purport that the ideas of creation, maintenance and dissolution of the universe, as well as the ideas of action, its factors and results were superimposed on the Self. Then, by the negation of the superimposed attributes the true nature of Brahman as free from all attributes has been brought out. This is the method of adhyaaropa and apavaada, superimposition and negation, which is adopted by Vedanta.” (Ref: What are Upanishads? : An over view by S.N. Sastri on Luthur.com) The analogy that is often used to describe the process of superimposition and negation is that of ‘using a thorn to remove a thorn’. Finally, when the last thorn is removed, the thorn used to remove it is thrown away as well. Similarly, Carbon can be used to reduce carbon emission while power is generated! Let us consider the issues of Carbon emission and global warming resulting in climate change in the above context. Recent conference in Climate change held in Paris is acclaimed to be a success to the planet earth collectively adopted by 195 countries both developed and developing. In a nutshell they all have agreed to reduce their carbon emissions to limit the global warming to less than 2C or even 1.5 between 2030 and 2050. Is it really practical to achieve the above target given the nature of reduction and the complexity of imposing such a reduction within the time frame? It is a big question mark. The only practical method to reduce CO2 is by using Hydrogen CO2 + H2----> CO + H2O and then convert CO into a useful product such as Urea NH2CONH2 a fertilizer. Production of Urea requires additional Hydrogen which is again obtained by combustion of fossil fuel resulting in CO2 emission. Moreover, CO2 will eventually be released at the point of usage of urea later. While trying to reduce Carbon emission one will end up with more Carbon emission in the atmosphere.
The carbon emission from power plants can be substituted with renewable energy sources such as wind and solar at a very high cost but how the emissions from chemical plants such as urea or from automobile emissions, steel plants and cement plants be contained? We should also remember that silicon wafer to produce solar panels consume large amount of power which now comes invariably from fossil fuels. There is a long list of such plants emitting Carbon every day from all over the world. But there is a possibility to reduce emissions substantially by converting CO2 emissions from power plants into a synthetic fuel which can then substitute fossil fuel to continue power generation. The CO2 resulting from combustion of synthetic fuel will be recycled in the same manner mentioned above thus completing a cycle. To convert CO2 into a synthetic fuel we will require Hydrogen either by renewable sources or non-renewable sources. The non-renewable sources for Hydrogen cannot be a long term solution but renewable Hydrogen is very expensive at this stage. Therefore, Hydrogen is the only source which will not only help reduce Carbon emissions but also help eliminate Carbon completely from planet earth. Renewable Hydrogen is the key to decarbonize the planet earth. However, it may be possible to decarbonize the planet temporarily by using Hydrogen derived from fossil fuel without emitting CO2! It is not just a theory but practical because the technology has already been tested! In this process the Carbon will remain in the loop where it will neither be buried nor emitted into the atmosphere but constantly recycled.

Wednesday, February 12, 2014

Desalination plants contribute to climate change


There is a growing evidence that shows increasing salinity of seawater effects the “water cycle” resulting in climate change. Apart from the natural cycle, the highly saline brine discharged from man-made “desalination” plants around the world also contributes to the increasing salinity of seawater. There are only few desalination plants suppliers world-wide who build such large scale desalination plants and they use only decades old desalination technologies. They recover 35% of fresh water and discharge 65% highly concentrated, toxic effluent back into the sea. Their main focus of innovation is to reduce the energy consumption because it is an energy intensive process. Such energy comes mainly from fossil fuels. The result is unabated Carbon emission, toxic brine discharge into the ocean, warm saline water discharge into the ocean from “once through cooling towers” from co-located power and desalination plants.Currently about 5000 million cubic meters of fresh water is generated per year from seawater desalination plants around the world; this capacity is expected to increase to 9000 million cubic meter per year by 2030.The brine outfall from desalination plants will amount to a staggering 30 billion cubic meters/yr. Such a huge volume of saline water with salinity ranging 70,000 ppm up to 95,000 ppm will certainly alter the water chemistry of the ocean. Desalination plant suppliers are not interested in “innovation” that can recover fresh water without “polluting” the sea. They rather justify using “environmental impact study” which invariably concludes there is absolutely no impact on environment and any toxic discharge into the sea is “harmless”. This practice is going on for decades without any check. Dwindling fish population world–wide is a direct impact of such discharge. Financial institutions such as world bank, Asian development bank etc are willingly finance such projects without questioning such technologies and their impact on marine environment. Their focus is only “return on investment”–the only criteria that is required for funding and not the “cost and benefit analysis”. A detailed analysis will reveal “handful of rich and powerful” Governments and individuals can influence the world’s climate intentionally or unintentionally. The same “rich and powerful” can shun any innovations “that might threaten their business model” and “ nip such innovations or inventions at their bud” because they simply do not believe in Research and Development or unwilling to direct their “cash flow” into R&D because they do not want any threat for their existing technologies. There are very few financial professionals who can think “outside the box” or predict their financial impact due to innovative technologies of the future. Their financial decisions reflect the sentiments of the financial institutions, namely “the return on investment”. “When you read about human-induced climate change it's often about melting glaciers and sea ice, increasing frequency of heat waves and powerful storms. Occasionally you'll hear about the acidification of the oceans too. What you don't often hear about is the saltiness of the seas. But according to a new piece of research just published inGeophysical Research Letters that is changing too. The saltiness, or salinity, of the oceans is controlled by how much water is entering the oceans from rivers and rain versus how much is evaporating, known as 'The Water Cycle'. The more sunshine and heat there is, the more water can evaporate, leaving the salts behind in higher concentrations in some places. Over time, those changes spread out as water moves, changing the salinity profiles of the oceans. Oceanographers from Scripps Institution of Oceanography and Lawrence Livermore National Laboratory fingerprinted salinity changes from 1955 to 2004 from 60 degrees south latitude to 60 degrees north latitude and down to the depth of 700 meters in the Atlantic, Pacific and Indian oceans. They found salinity changes that matched what they expected from such natural changes as El Niño or volcanic eruptions (the latter can lower evaporation by shading and cooling the atmosphere). Next the ocean data was compared to 11,000 years of ocean data generated by simulations from 20 of the latest global climate models. When they did that they found that the changes seen in the oceans matched those that would be expected from human forcing of the climate. When they combined temperature changes with the salinity, the human imprint is even clearer, they reported. "These results add to the evidence that human forcing of the climate is already taking place, and already changing the climate in ways that will have a profound impact on people throughout the world in coming decades," the oceanographers conclude.” (Ref: Larry O'Hanlon, Discovery News) SALINITY Although everyone knows that seawater is salty, few know that even small variations in ocean surface salinity (i.e., concentration of dissolved salts) can have dramatic effects on the water cycle and ocean circulation. Throughout Earth's history, certain processes have served to make the ocean salty. The weathering of rocks delivers minerals, including salt, into the ocean. Evaporation of ocean water and formation of sea ice both increase the salinity of the ocean. However these "salinity raising" factors are continually counterbalanced by processes that decrease salinity such as the continuous input of fresh water from rivers, precipitation of rain and snow, and melting of ice. SALINITY & THE WATER CYCLE Understanding why the sea is salty begins with knowing how water cycles among the ocean's physical states: liquid, vapor, and ice. As a liquid, water dissolves rocks and sediments and reacts with emissions from volcanoes and hydrothermal vents. This creates a complex solution of mineral salts in our ocean basins. Conversely, in other states such as vapor and ice, water and salt are incompatible: water vapor and ice are essentially salt free. Since 86% of global evaporation and 78% of global precipitation occur over the ocean, ocean surface salinity is the key variable for understanding how fresh water input and output affects ocean dynamics. By tracking ocean surface salinity we can directly monitor variations in the water cycle: land runoff, sea ice freezing and melting, and evaporation and precipitation over the oceans. SALINITY, OCEAN CIRCULATION & CLIMATE Surface winds drive currents in the upper ocean. Deep below the surface, however, ocean circulation is primarily driven by changes in seawater density, which is determined by salinity and temperature. In some regions such as the North Atlantic near Greenland, cooled high-salinity surface waters can become dense enough to sink to great depths. The 'Global Conveyor Belt' visualization (below) shows a simplified model of how this type of circulation would work as an interconnected system. The ocean stores more heat in the uppermost three (3) meters than the entire atmosphere. Thus density-controlled circulation is key to transporting heat in the ocean and maintaining Earth's climate. Excess heat associated with the increase in global temperature during the last century is being absorbed and moved by the ocean. In addition, studies suggest that seawater is becoming fresher in high latitudes and tropical areas dominated by rain, while in sub-tropical high evaporation regions, waters are getting saltier. Such changes in the water cycle could significantly impact not only ocean circulation but also the climate in which we live." (Ref: NASA earth science) The four main forces that control the earth’s climate are “Sea, Sun, Moon and earth’s rotation and interference by human beings will alter the equilibrium of the system. In order to maintain its equilibrium, Nature is forced to change the climate unpredictably with devastating effects. We cannot underestimate the pollution caused by human beings because they are capable of altering the Nature’s equilibrium over a period of time no matter how “miniscule” (parts per millions or billions) the pollution may be. Any future investment on large scale infrastructures should take into account the “human induced climate change” in their model and projections, failing which “climate change” will prove them wrong and the consequences will be dire. Reference : Environmental Impacts of Seawater Desalination: Arabian Gulf Case Study Mohamed A. Dawoud1 and Mohamed M. Al Mulla 1 Water Resources Department, Environment Agency, Abu Dhabi, United Arab Emirates 2.Ministry of Environment and Water, Dubai, United Arab Emirates

Thursday, July 11, 2013

How to control Carbon emissions in coal-fired power plants?


“Over two-thirds of today’s proven reserves of fossil fuels need to still be in the ground in 2050 in order to prevent catastrophic levels of climate change” – a warning by scientists. There is a great deal of debate on climate change due to man-made Carbon emissions and how to control it without any further escalation. The first obvious option will be to completely stop the usage of fossil fuel with immediate effect. But it is practically not feasible unless there is an alternative Non-Carbon fuel readily available to substitute fossil fuels. The second option will be to capture carbon emission and bury them under ground by CCS (Carbon capture and sequestration) method. But this concept is still not proven commercially and there are still currently many uncertainties with this technology, the cost involved and environmental implications etc.The third option will be not to use fresh fossil fuel for combustion or capture and bury the Carbon emissions but convert the Carbon emissions into a synthetic hydrocarbon fuel such as synthetic natural gas (SNG) and recycle them. By this way the level of existing Carbon emission can be maintained at current levels without any further escalation. At least the Carbon emission levels can be reduced substantially and maintained at lower levels to mitigate climate changes. It is technically feasible to implement the third option but it has to be implemented with great urgency. One way of converting Carbon emission is to capture and purify them using conventional methods and then react with Hydrogen to produce synthetic natural gas (SNG) CO2 + 4 H2 ----------> CH4 + 2 H2O The same process will be used by NASA to eliminate carbon built-up in the flights by crew members during their long voyage into the space and also to survive in places like Mars where the atmosphere is predominantly carbon dioxide. But we need Hydrogen which is renewable so that the above process can be sustained in the future .Currently the cost of Hydrogen production using renewal energy sources are expensive due to high initial investment and the large energy consumption. We have now developed a new process to generate syngas using simple coal, which is predominantly Hydrogen to be used as a Carbon sink to convert Carbon emissions into synthetic natural gas (SNG). The same Hydrogen rich syngas can be directly used to generate power using gas turbine in a simple or combined cycle mode. The Carbon emission from the gas turbine can be converted into SNG (synthetic natural gas) using surplus Hydrogen-rich syngas. The SNG thus produced can be distributed for CHP (combined heat and power) applications so that the Carbon emission can be controlled or distributed. By implementing the above process one should be able to maintain Carbon at specific level in the atmosphere. Existing coal fired power plants can retrofit this technology so that they will be able to reduce their Carbon emissions substantially; they can also produce SNG as a by-product using their Carbon emissions and achieve zero Carbon emission at their site while generating revenue by sale of SNG. Coal is the cheapest and widely used fossil fuel for power generation all over the world. Therefore it will be a win situation for everyone to use coal and also to reduce Carbon emissions that can address the problems of climate change. Meanwhile research is going on to generate renewable Hydrogen cheaply directly from water using various technologies. But we believe we are still far away from achieving this goal and we require immediate solution to address our climate change problems. Recently BASF made a press release :www.basf.com/group/pressrelease/P-13-351‎ claiming a break-through technology to generate Hydrogen from natural gas without any CO2 emissions.

Sunday, May 12, 2013

Flawed Carbon pricing and the cost of global warming

The climate is changing with increasing global warming caused by man-made Carbon emission. The economic impact of global warming can no longer be ignored by Governments around the world because it is impacting their budget bottom lines. Weather is becoming unpredictable. Even if Meteorological department predicts a disaster 24 hrs in advance, there is nothing Governments can do to prevent human and economic losses within a short span of time but evacuate people to safety leaving behind all their properties. Governments are forced to allocate funds for disaster management every year caused by severe draughts, unprecedented snow falls, and coastal erosion by rising sea levels, flash flooding, inundation and power black outs. We often hear people saying,” we were completely taken by surprise by this event and we have never seen anything like this in the last 50 years” after every naturals disasters explaining the nature and scale of disasters. Nature is forcing Governments to allocate more funds for disaster managements and such allocations have reached unprecedented levels. The cost of natural disasters around the world in 2011 was estimated at $ 400 billion and in 2012 it was estimated at $160 billion. The only way to fund these disasters is to tax Carbon pollution which causes global warming. Countries should take long term decisions that will save their current and future generations to come. They should understand how Carbon is emitted and what the best way to curb such emissions is. It is a global issue and its requires a collective solution. There is no use of pricing Carbon when economic recession can jeopardize the pricing mechanism? Global warming is a moral and social issue and not just an economic issue. Developed countries have been emitting bulk of the Carbon since industrial revolution while developing countries such as India and China were emitting less carbon in spite of their vast population due to their lowest per capita consumption. But that trend has now changed with rapid industrialization and economic growth of India and China and other developing economies. Australia is still a leading emitter of Carbon in the world in spite of their low population because of their high energy consumption, availability of cheap and high quality Coal and increasing mining, industrial and agricultural activities. That is why Australia is one of the first few countries who introduced Carbon tax while rest of the countries is still debating about it. Now it is clear that Carbon emission is directly proportional to industrial, economic and population growth of a country and it can be easily quantified based on the growth rate of each country. It is time countries agree to cut their Carbon emissions to sustainable levels with a realistic Carbon pricing mechanism and sign a world-wide treaty through UN. “THE EUROPEAN UNION carbon emissions trading scheme—the biggest in the world and the heart of Europe’s climate- change program—is in dire straits. The scheme’s carbon price has collapsed. The primary reason: The economic recession has suppressed manufacturing, thereby reducing emissions and creating a huge over- supply of carbon emissions allowances. Carbon trading is a market approach to reducing greenhouse gas emissions in which each facility involved is given an emissions cap for the year, and each year that cap is reduced. A firm must record and report its facilities’ emissions and must obtain allowances for its total emissions. An allowance permits a facility to emit 1 metric ton of carbon dioxide or its carbon equivalent; some allowances are given for free by the government, others can be bought at auction or from other firms. If a facility exceeds its cap, the company operating it has options: It can reduce emissions, buy allowances from other companies, or obtain allowance offsets by reducing emissions at another pollution source. The cost of an allowance is referred to as the carbon price and is driven by market conditions such as supply and demand. If the low carbon price continues, the region’s ability to meet long-term reduction targets for greenhouse gas emissions will be severely hampered because the trading scheme will fail to provide money for clean-tech programs and incentive for manufactures to adopt cleaner technologies. The trading scheme is a key component of the EU’s climate-change strategy because about 40% of all greenhouse gases emitted in the region fall under EU’s control. The mandatory scheme applies to 11,000 industrial installations, including power plants and major chemical facilities, across all 27 member states, as well as in Croatia, Iceland, Liechtenstein, and Norway. The aviation sector has been included in the scheme, but its active participation has been deferred to allow for an international agreement on aviation emissions, which is expected to be concluded in the fall. The goal of the European Commission, the EU’s administrative body and the architect of the emissions trading scheme, is to reduce all greenhouse gas emissions by 20% from 1990 levels by 2020. To contribute toward this goal, the trading scheme has targeted a 21% cut in the emissions of participating sectors by 2020 from a 2005 baseline. In recent weeks, however, the EU carbon price dropped to a new low of $5.20 for each metric ton allowance of CO2, down from a high of $23 in 2011. This is despite an annual reduction of the EU emissions cap of 1.74% through 2020 and the introduction on Jan. 1 of a new phase of the scheme requiring companies to purchase allowances. AT ITS CURRENT carbon price, the EU emission scheme’s role in encouraging chemical firms to ditch fossil fuels and adopt greener technologies “is meaningless,” says André Veneman, director of sustainability at AkzoNobel. Many of the industry’s investments in low-carbon technologies that are marginally financially viable also will likely be delayed, he says. Without a strong carbon price, the underlying push to clean-tech in the EU will come only from the price of oil, Veneman adds. Veneman and other experts say that a carbon price of between $68 and $135 is required if industry as a whole is to be forced to shift onto a new low-carbon footing. Yvo de Boer, special global adviser for climate change and sustainability for KPMG—an audit, tax, and advisory firm—and form EUROPEAN SCHEME IS IN FREE FALL Record-low CARBON PRICE threatens to derail transition away from fossil fuels and ability to meet climate-change targets.” Source: EUROPEAN SCHEME IS IN FREE FALL Record-low CARBON PRICE threatens to derail transition away from fossil fuels and ability to meet climate-change targets ALEX SCOTT, C&EN LONDO The burden of Carbon tax should be borne by both power generators as well as consumers. Even if the Carbon tax is imposed on emitters it will eventually be passed on to consumers. Either way the cost of energy will increase steeply and there is no way to avoid such escalation if we want to maintain our power consumption levels or our current life style. In other words people will have to pay penalty for polluting the air either by generating or consuming power that causes Carbon pollution. All developed countries that have been polluting the atmosphere with Carbon emission should be taxed retrospectively from the time of industrial revolution so that emerging countries need not bear the full cost of global warming. Such a fund should be used for developing renewable and clean energy technologies or to purchase Carbon allowances. Current mechanism of Carbon pricing does not penalize countries who caused the global warming in the first place for hundreds of years but penalizes only countries who currently accelerate the rate of Carbon emission. Such an approach is a gross injustice on the emerging economies and not at all pragmatic. Most of the developed countries are currently facing economic recession resulting in plummeted Carbon price. This will only encourage existing Carbon emitters to emit Carbon cheaply and penalize Renewable energy and clean energy technologies with higher tariffs and drive them to extinction. In spite of Carbon level in the atmosphere exceeding 400 ppm according to the latest report, the world is helpless to reduce the Carbon emission anytime sooner making our planet vulnerable to catastrophic natural disasters. Countries that are reluctant to pay Carbon tax will pay for Natural disasters which may be many times costlier than Carbon tax. Countries like US, European Union, Japan, Australia the largest power consumers and countries like Saudi Arabia, Russia, Venezuela, Iran, Iraq, Libya the largest oil producers should bear the cost of Carbon pollution that caused the globe to warm since industrial revolution. Such a fund should be utilized in developing innovative Renewable energy and clean energy technologies of the future. More than anything else the rich and powerful countries should declare global warming as a moral issue of the twenty-first century and take some bold and hard economic decisions to save the planet earth.

Tuesday, April 2, 2013

How to put “Carbon genie” back into the bottle?

The Carbon emission in the atmosphere is steadily increasing. The latest statistics indicates that it has reached a staggering 35.6 billion tons/yr, a 2.6% increase over the previous year, thanks to the growth of China. It is becoming evident that there is a relationship between the Carbon emission, global warming and erratic weather patterns around the world. According to ‘The Guardian’, “The chances of the world holding temperature rise to 2C – the level of global warming considered "safe" by scientists – appear to be fading fast with US scientists reporting the second-greatest annual rise in CO2emissions in 2012. Carbon dioxide levels measured at Mauna Loa observatory in Hawaii jumped by 2.67 parts per million (ppm) in 2012 to 395ppm, said Pieter Tans, who leads the greenhouse gas measurement team for the US National Oceanic and Atmospheric Administration (NOAA). The record was an increase of 2.93ppm in 1998. The jump comes as a study published in Science on Thursday looking at global surface temperatures for the past 1,500 years warned that "recent warming is unprecedented", prompting UN climate chief, Christiana Figures, to say that "staggering global temps show urgent need to act. Rapid climate change must be countered with accelerated action." Tans told the Associated Press the major factor was an increase in fossil fuel use. "It's just a testament to human influence being dominant", he said. "The prospects of keeping climate change below that [two-degree goal] are fading away. Preliminary data for February 2013 show CO2 levels last month standing at their highest ever recorded at Manua Loa, a remote volcano in the Pacific. Last month they reached a record 396.80ppm with a jump of 3.26ppm parts per million between February 2012 and 2013. Carbon dioxide levels fluctuate seasonally, with the highest levels usually observed in April. Last year the highest level at Mauna Loa was measured at 396.18ppm. What is disturbing scientists is the acceleration of CO2concentrations in the atmosphere, which are occurring in spite of attempts by governments to restrain fossil fuel emissions. According to the observatory, the average annual rate of increase for the past 10 years has been 2.07ppm – more than double the increase in the 1960s. The average increase in CO2 levels between 1959 to the present was 1.49ppm per year. The Mauna Loa measurements coincide with a new peer-reviewed study of the pledges made by countries to reduce CO2 emissions. The Dutch government's scientific advisers show that rich countries will have to reduce emissions by 50% percent below 1990 levels by 2020 if there is to be even a medium chance of limiting warming to 2C, thus preventing some of climate change's worst impacts."The challenge we already knew was great is even more difficult", said Kelly Levin, a researcher with the World Resources Institute in Washington. "But even with an increased level of reductions necessary, it shows that a 2° goal is still attainable – if we act ambitiously and immediately." Extreme weather, which is predicted by climate scientists to occur more frequently as the atmosphere warms and CO2 levels rise, has already been seen widely in 2013. China and India have experienced their coldest winter in decades and Australia has seen a four-month long heat wave with 123 weather records broken during what scientists are calling it 'angry summer'. "We are in [getting] into new climatic territory. And when you get records being broken at that scale, you can start to see a shifting from one climate system to another. So the climate has in one sense actually changed and we are now entering a new series of climatic conditions that we just haven't seen before", said Tim Flannery, head of the Australian government's climate change commission, this week. Earlier this week the Met Office warned that the "extreme" patterns of flood and drought experienced by Britain in 2012 were likely to become more frequent. One in every five days in 2012 saw flooding but one in four days were in drought”. The biggest question now is how to put this Carbon genie back into the bottle? Renewble energy may be an answer to curtail future Carbon emissions but what about the existing coal fired power plants that constitutes 60% of the existing power generation in the world? There is no easy solution. But the “Law of conservation of mass” gives us a clue.The Carbon we dig from the earth in the form of coal, combusted into the atmosphere as Carbon dioxide may be captured and recycled back into the system in the form of a fuel.By this way, we may not require fresh coal to be mined.To achive this feat,we need Hydrogen from a renewable source.The renewable Hydrogen can be combined with Carbon dioxide caputured from the coal fired power plants to generate synthetic natural gas (SNG).The SNG generated by this method can be used for future power generation, substituting Coal and future carbon emission can be recycled in the form of SNG. This approach will open up a wide range of possibilities and potentially reduce the carbon emission to zero. Many companies round the world including DOE (Department of energy,Govt of USA) are trying to develop an economically viable method to generate Hydrogen with an estimated cost of poduction at $ 2.50 /kg of Hydrogen. One potential method is to generate Hydrogen by splitting water using a thermo-chemical process using concentrated solar therml energy developed by European Union called “Hydrosol cycle”. The method by which Hydrogen is generated should be free from any Carbon emision. To clean up 1 Kg Carbon dioxide one will require at least 0.2kg Hydrogen. For example, a 100Mw coal fired power plant emitting about 2256 Mt CO2/day will require about 451 Mt of Hydrogen/day, costing about $1,127,500 per day.It will cost roughly $500/Mt of C02 to put the ‘ Carbon genie’ back into the bottle! One can imagein the cost of cleaning up 35.6 billion tons of Carbon dioxide from the atmosphere.Only a Carbon free Hydrogen derived from water can save the world from a potential catastrophe.

Friday, January 4, 2013

Heating and cooling buildings with solar heat.

Air conditioning makes up bulk of the power usage especially in tropical countries where the sun is shining almost throughout the year and the humidity levels are high. It makes a perfect sense to use solar heat to cool homes, business and factories. Many air-conditioning systems are commercially available using simple roof top PV solar panels to generate electric power to run an electric window air-conditioners. This system uses commercially available solar panels and window air-conditioners and uses solar power to generate electricity to run the compressor and the blower in the air-con unit. This system requires large storage battery to store adequate electricity to run your air-conditioners for specified period of time. Otherwise it requires a large area of solar panels to meet the demand. The efficiency of such systems can be improved using DC operated compressors and fans. However, renewable energy such as solar is still expensive to run air-conditioners because of high initial investment cost, though it may be economical in the long run as the cost of solar panels and accessories slowly come down over a period of time. Moreover such systems are limited to small air condition capacities. For large air-conditioning requirements such as business and factories, we require a system that uses solar heat directly to air-condition the premises with higher efficiency and thermal storage capabilities. Designing such a system is not very difficult because most of the components necessary to install such a systems are readily available. One can install an air-conditioning system based on 100% solar thermal heat with molten salt thermal storage. Alternatively, a hybrid system can be installed based on solar heat without a thermal storage but using city gas supply. Many countries use gas for heating during winter seasons but do not use gas during summer. These countries can use a hybrid (solar-gas) system to air-condition their premises and avoid peak electric usage during summer seasons thereby avoiding electrical black-outs. The advantage with such system is they can also be used for heating the premises during winter season. With changing climate due to global warming many warm countries like India also experiences cold temperatures during winter season. For example New Delhi in India has experienced a sharp drop in temperature up to 15-20c during winter from earlier winters. Solar cooling systems to date have used waste heat gas absorption chiller heaters, which utilize the waste heat from co-
generation systems (CGS) for the cold water. However, these chiller heaters with their established technologies are devices designed for the effective use of stable CGS high-temperature waste heat, so they cannot accommodate the preferential use of solar heat when solar hot water temperatures suddenly change from large variations in the heat collector temperatures due to changes in the weather. The new solar absorption chiller heaters are now specially designed for the effective use of low-temperature solar heat to address this problem and improve the energy conservation effect from solar cooling system. Hot water at less than 90C can be used for such systems and typical chillers with their rated specification are shown in the figures. The efficiency of the system can be vastly improved by using parabolic solar concentrators, up to 27 times higher than ordinary flat plate solar collectors resulting in conversion efficiency up to 85% in heating and cooling. By selecting a natural refrigerant such as R717 we can save the environment from ozone depletion. Such systems offers flexibility to use exhaust heat, natural gas along with solar thermal storage up to 220C (phase transition temperature).The system offers an attractive return on investment, electricity savings and Carbon pollution reduction. The system can be designed from 5TR up to 200TR refrigeration capacity for 100% solar and up to 1000TR for a solar-gas hybrid systems. The solar thermal system with molten salt storage is versatile in its application because the same system can be designed for heating or cooling or on-site power generation for continuous applications. .