Google analytics tag

Showing posts with label Zero emission. Show all posts
Showing posts with label Zero emission. Show all posts

Thursday, January 18, 2024

CARBON RECYCLING TECHNOLOGY

( A zero emission and zero fuel baseload power technology)" "The entire plant will run on Solar and Wind only." "Pitch for CRT (Carbon Recycling Technology) Headlining the Pitch: • CRT is a revolutionary closed-loop system that captures carbon, converts it into fuel, and uses that fuel to continuously power itself, all while generating no emissions fulfilling all the requirements of a “circular economy”. • CRT addresses two major challenges facing baseload power plants: fossil fuel dependence and carbon emissions. CRT eliminates both these concerns simultaneously. Key selling points: • Fossil fuel freedom: CRT offers complete freedom from fossil fuel after start- up, offering enormous cost savings and environmental benefits. CRT is a ""self-sustaining"" and ""perpetual fuel generation"" technology with Zero emissions advantage: With zero emission emissions, including compliance" "with regulations, and eligibility for carbon credits, CRT is setting a standard for ESG compliance in power industries. • CRT offers enormous cost savings from eliminated fuel purchases and potential carbon credit revenue. Countries like India which are fully dependent on imported fossil fuels can save substantial foreign exchange outflow. CRT can be scaled up to large capacities and set up in various locations of the country enabling emission targets to be met as a signatory of the Kyoto protocol. India can lead the world on zero emission power technology using advanced gas turbine technologies as the world is preparing for Electrical vehicles and Hydrogen (Fuel cell) vehicles, • Technology leadership: CRT offers the unique advantages of using alkaline water scrubbing of CO2 and membrane contactor degasification/stripping compared to other technologies. The capacity of the baseload combined cycle power plant: 370 Mw Electrical efficiency: 56 % Fuel consumption: 2254 mmBtu/hr Cost of natural gas: $11/mmBtu Power tariff: $ 0.15/kWh Annual fuel cost : $ 24,974/hr x 8760 hrs/yr = $ 217.20 mil Plant cost: $ 15.00 billion. Total project cost: $ 16 billion. First-year operation: 1. Power sales revenue: $ 486 mil/yr. 2. Oxygen sales: $ 8-10 billion/yr. 3. Carbon credit: $130 mil/yr 4. Fuel savings: $ 217.20 mil/yr." "Total revenue : $ 8-9 billion/yr "The life of the plnts 25 years. Since there will be no fuel usage after start-up (only initially natural gas is used as the fuel). For subsequent runs, the plant generates its fuel and power itself with zero emissions. The cost of production for power will be $447/yr. assuming SNG price @$11/mmBtu for 25 years for the life of the plant. The sales revenue will be $ 8 billion/yr. Gross profit/yr. will be:$ 7 billion ROI will be: Less than 2-3 years depending upon Oxygen price. The rate of return will be nearly about 80-85 % The power tariff is fixed at $ 0.15/kwh for the life of the plant of 25 years. With the incremental increase in tariff @ 5% the sales revenue and profitability will sharply increase!
CARBON RECYCLING PROCESS TECHNOLOGY Carbon Recycling Technology (CRT) is a process technology that uses the thermodynamic law of conservation of mass, which states that ‘ matter is neither created nor destroyed’. The Carbon atom in a fossil fuel such as coal, oil and gas remains constant irrespective of various transformations it undergoes such as combustion, reformation, gasification etc. In CRT the Carbon atom on combustion with oxidant such as air or pure Oxygen generates thermal energy emitting CO2 gas. The CO2 can be converted into CH4 (SNG) by methanation. Using renewable Hydrogen. Renewable Hydrogen can be derived from desalinated seawater by electrolysis using renewable energy sources such as solar and wind etc. However, the Carbon atom remains the same in the form of CH4 (SNG). The SNG can be subject to combustion in a gas turbine to generate power emitting CO2 once again. The CO2 can be captured and used as described above thereby continuing the cycle of power generation with zero emission into the atmosphere. The above process technology is known as Carbon capture and reuse (CCU). In our CRT process, the CO2 emission is absorbed in an alkalised seawater using a contact membrane generating Sodium carbonate (Na2CO3) solution. The resulting Na2CO3 solution is further acidified with sulfuric acid using the contact membrane similar to the above and degasified to recover CO2 in the gaseous form, which is compressed and stored for further use. The stored CO2 under pressure is further methanated using renewable Hydrogen as described above in an adiabatic reactor using proprietary catalysts. It is a highly exothermic reaction releasing large amounts of heat, which is removed using the appropriate mechanism to complete the reaction. The waste heat is used to generate superheated steam by evaporating the water which is a by-product of the methanation reaction which can be used for further use. The resulting SNG is dehydrated and stored under pressure which has a higher heating value (HHV) of 53 MJ/kg for further combustion in the above gas turbine. The CO2 emitted from the gas turbine is captured as described above completing the cycle. The above-described process is known as CRT. In normal power generation using gas turbines a readily available fossil fuel is used to generate power emitting CO2 into the atmosphere. In CRT the fuel SNG is generated internally using CO2 emission from a gas turbine. It is a power generation technology with a ZERO CO2 EMISSION AND ZERO EXTERNAL FOSSIL FUEL REQUIREMENT. By replicating CRT in various parts of the world, the CO2 along with H2O emissions can be eliminated while no fresh fossil fuel will be burnt, fulfilling the world’s abatement requirements. The initial investment for CRT will be much higher than a normal power plant with emissions but when considering the Carbon credit available and no fossil fuel will be further required and burnt the initial capital can be easily recovered in a shorter period justifying the high initial cost." "For example, a simple gas turbine with a power generation capacity of 1.20 MW emits about 960 kgs/hr of CO2 constituting less than 7% of the emission by volume at 510C. The waste heat is utilized to generate steam for internal use in the CRT process. What are the process steps involved? 1. It involves the generation of Syngas with an H2:CO ratio at 3:1 using a steam methane reformer. IT will use regasified LNG to start with. It is a well- established technology. 2. Hydrogen generation using desalinated sea water using PEM electrolysis. The process will generate sufficient Hydrogen with Oxygen as a by-product. Oxygen can be a valuable product for hospitals and industrial applications. It is a well-established technology. 3. Seawater desalination using the SWRO process with an alkalised feed for further recovery of CO2 from gas turbine exhaust to generate electricity. The waste heat will be utilized for steam generation using desalinated seawater (DM water). It is a well-established technology. 4. The CO2 emitted from gas turbines is absorbed using the above SWRO permeate which is alkaline in nature forming a solution of Sodium carbonate which will be further acidified using commercial-grade H2SO4 to release CO2 from a Sodium carbonate solution and degasified using a contact membrane. The recovered CO2 is compressed and stored for further use. 5. The above Syngas along with Hydrogen and captured CO2 will be methanated in multiple tubular reactors using proprietary catalysts adiabatically, generating renewable synthetic methane gas (RSMG) along with superheated steam as a by-product. It is a commercially established technology. The methane gas pipeline is rated with LHV at 50 MJ/kg and free from sulphur compounds. 6. The renewable synthetic methane gas (RSMG) thus generated will be recycled to the gas turbine for further power generation eliminating fresh LNG requirements. 7. Since CO2 emission is captured and converted into RSMG and recycled internally there will be zero emissions. The above-described CRT process will be a ‘Zero emission baseload power plant and zero fossil fuel usage’."

Sunday, December 15, 2019

Can Hydrogen substitute Carbon and avoid catastrophic climate change?


 The answer is most likely NO for the following reasons.
It has been established that man-made GHG emissions mainly by CO2 is causing the globe to warm by a phenomenon known as “Greenhouse gas effect” triggering change in climate. Therefore, many are suggesting Hydrogen as an alternative clean fuel to reduce or eliminate CO2 emission. But replacing Carbon with Hydrogen we will only substitute Oxides of Carbon (CO2) with Oxides of Hydrogen (H2O). But water vapor too is a potent greenhouse gas GHG and it may enhance the warming of the globe by a phenomenon known as Feedback effect as explained by NASA and American chemical society (ACS) by the following references:

 Moreover, Renewable Hydrogen is still very expensive compared to Hydrogen derived from fossil fuel such as coal and gas even though cost of renewable energy has reduced substantially in recent past. By injecting valuable renewable Hydrogen into existing pipeline carrying natural gas one will generate additional issues because of varying physical and chemical properties of Hydrogen and its flammability and explosive nature compared to natural gas. Hydrogen is an unstable atom and readily forms a bond with Oxygen and Carbon and that is why Nature does not produce free Hydrogen. It requires a Carbon backbone. Only an emission free power generation technology can solve the problem of global warming. It is only possible by recycling Carbon (Carbon recycling technology) with the help of renewable Hydrogen and to achieve a circular economy. There is no shortcut.