‘Clean Energy and Water Technologies’ is now a social enterprise based in Melbourne, Australia. The purpose of this enterprise is to introduce a zero emission technology developed and patented by Ahilan Raman, the inventor of the technology. A 25 Mw demonstration plant will be installed to show case the above technology. This platform also used as a blog will publish articles relevant to Zero emission technologies for power and Zero liquid discharge technologies for water industries.
Google analytics tag
Showing posts with label Fuelcell. Show all posts
Showing posts with label Fuelcell. Show all posts
Thursday, April 27, 2017
Battery versus Hydrogen
Thursday, August 2, 2012
Solar Hydrogen for homes and cars.
Monday, July 16, 2012
Hydrogen from seawater for Fuelcell
Wednesday, June 6, 2012
Cheap Hydrogen to combat global warming?
Monday, May 28, 2012
Fuelcell can become a commercial reality
Wednesday, May 23, 2012
Liquid coal- a novel fuel to reduce greenhouse gas
Thursday, May 17, 2012
Ammonia can substitute Gasoline
Tuesday, May 8, 2012
Power generation with Ammonia
Friday, March 30, 2012
Sustainable Hydrogen from bio-waste
Substituting fossil fuels with Hydrogen is not only efficient but also sustainable in the long run. While efforts are on to produce Hydrogen at a cost in par with Gasoline or less using various methods, sustainability is equally important. We have necessary technology to convert piped natural gas to Hydrogen to generate electricity on site to power our homes and fuel our cars using Fuelcell.But this will not be a sustainable solution because we can no longer depend on piped natural gas because its availability is limited; and it is also a potent greenhouse gas. The biogas or land fill gas has the same composition as that of a natural gas except the Methane content is lower than piped natural gas. The natural gas is produced by Nature and comes out along with number of impurities such as Carbon dioxide, moisture and Hydrogen sulfide etc.The impure natural gas is cleaned and purified to increase the Methane content up to 90%, before it is compressed and supplied to the customers. The gas is further purified so that it can be liquefied into LNG (liquefied natural gas) to be transported to long distances or exported to overseas.
When the natural gas is liquefied, the volume of gas is reduced about 600 times to its original volume, so that the energy density is increased substantially, in order to reduce the cost of transportation. The LNG can be readily vaporized and used at any remote location, where there is no natural gas pipelines are in existence or in operation. Similarly Hydrogen too can be liquefied into liquid Hydrogen. Our current focus is to reduce the cost of Hydrogen to the level of Gasoline or even less. Biogas and bio-organic materials are potential sources of Hydrogen and also they are sustianable.Our current production of wastes from industries, business and domestic have increased substantially creating sustainability isues.These wastes are also major sources of Greenhouse gases and also sources of many airborne diseses.They also cause depletion of valuable resources without a credible recycling mechanisms. For example, number of valuable materials including Gold, Silver, Platinum, Lead, Cadmium, Mercury and Lithium are thrown into municipal solid waste (MSW) and sewages. Major domestic wastes include food, paper, plastics and wood materials. Industrial wastes include many toxic chemicals including Mercury, Arsenic, tanning chemicals, photographic chemicals, toxic solvents and gases. The domestic and industrial effluents contain valuable materials such as Potassim, Phosphorous and Nitrates. We get these valuable resources from Nature, convert them into useful products and then throw them away as a waste. These valuable materials remain as elements without any change irrespective of the type of usages.Recyling waste materials and treatment of waste water and effluent is a very big business. Waste to wealth is a hot topic.
The waste materials both organic and inorganic are too valuable to be wasted for two simple reasons. First, it pollutes our land, water and air; second, we need fresh resources and these resources are limited while our needs are expanding exponentially. It is not an option but an absolute necessity to recycle them to maintain sustainability. For example, most of the countries do not have Phosphorous resources, a vital ingredient for plant growth and food production. Bulk of the Phosphorus and Nitrates are not recovered from municipal waste water and sewage plants. We simply discharge them into sea at far away distance while the public is in dark and EPA shows a blind eye to such activities. Toxic Methane gases are leaking from many land fill sites and some of these sites were even sold to gullible customers as potential housing sites. Many new residents in these locations find later that their houses have been built on abandoned landfill sites. They knew only when the tap water becomes highly inflammable when lighting with a match stick. The levels of Methane were above the threshold limit and these houses were not fit for living. We have to treat wastes because we can recover valuable nutrients and also generate energy without using fresh fossil fuels. It is a win situation for everybody involved in the business of ‘waste to wealth’.
These wastes have a potential to guarantee cheap and sustainable Hydrogen for the future. Biogas is a known technology that is generated from various municipal solid wastes and effluents. But current methods of biogas generation are not efficient and further cleaning and purifications are necessary. The low grade methane 40-55% is not suitable for many industrial applications except for domestic heating. The biogas generated by anaerobic digestion has to be scrubbed free of Carbon dioxide and Hydrogen sulfide to get more than 90% Methane gas so that it can be used for power generation and even for steam reforming to Hydrogen generation. Fuel cell used for onsite power generation and Fuel cell cars require high purity Hydrogen. Such Hydrogen is not possible without cleaning and purifying ‘Bio-gas’ significantly. Hydrogen generation from Biogas or from Bioethanol is a potential source of Hydrogen in the future.
Thursday, March 22, 2012
Solar energy storage with Battery or Hydrogen?
Renewable energy industry has slowly but steadily started expanding in many parts of the world in spite of high cost of investment and high cost of energy. Countries like US, Germany and China are now investing on large scale solar and wind technologies, opening new avenues for investments and employment opportunities. Many of these technologies will undergo number of changes over a period of time before it can completely substitute fossil fuels. How long this process will take will depend upon number of factors; but the single biggest driving force will be ‘the issue global warming and its consequences” and also on uncertainties over oil reserves in the world. Nothing dramatic will happen in the near future except the concept of alternative source of energy will expand rapidly. It is also an opportunity to discover new forms of fuels, power generation and distribution methods.
The concept of solar energy is now well-recognized as an alternative source of energy because, it is abundantly available, it is clean, generates no pollution and it is silent. The major raw materials such as Silica and Gallium Arsenide are also available but some of the rare earth materials used in PV industries and batteries, are available only in certain parts of the world. China is endowed with many such rare earth resources. For example, Lithium has limited resources and currently bulk of it is produced from natural brines similar to the one at Atacama deserts in South America. It is also available in the form of minerals and ores which many countries are now trying to exploit commercially.
The storage of energy from solar and wind is currently done using deep cycle batteries, most of which are Lead-acid batteries. Bulk of the used Lead acid batteries are recycled but the demand for such batteries keeps increasing. The sheer weight of these batteris, space required to install them, capacity utilization, capacity constraints, regular requirement of maintenance and life cycle are some of the issues that are critical for renewable industries. In deep-cycle batteries, discharging stored energy below certain levels dramatically reduces the life span. Hot climate conditions have certain impacts on maintenance of such batteries. Life of a battery is critical because when you calculate the cost of energy over the life cycle of 25 years, the number of replacements of batteries and their cost will have a dramatic effect on the cost of energy.
Batteries are indispensable tools in energy industries but, their usage can be minimized to a great extent by using Hydrogen as a storage medium. Let us analyze a simple example of a PV solar system for power generation. We made a computer simulation on three different scenario for a PV solar system for a small residence with power consumption at 15,500kwhrs/day. First simulation was based on PV solar, direct grid connect, without any storage batteries but connected directly to the grid, assuming the grid power tariff is at $0.10/kwhrs and sale to grid tariff at $ 0.30/kwhrs.The second simulation was based on grid independent system using battery storage for 8 hrs autonomy. The third simulation was also grid independent, but solar power was connected to an Electrolyzer to generate Hydrogen and store it in a tank. We used a small capacity battery, less than twenty percent of the capacity used in the previous case and a Hydrogen storage with Fuel cell along with an inverter. The stored Hydrogen was used to generate power to meet the requirement of the residence, instead of supplying power directly from the battery. The cost of energy using direct grid connect was the lowest $$0.33/kwhrs, while Grid independent with battery storage ,the cost of power was $1.20/kwhrs.In third scenario with Hydrogen and Fuel cell, the cost of power was $ 1.90/kwhrs, but there was surplus Hydrogen in the storage tank. With Hydrogen as a storage medium, the cost of power is high due to initial investment but it is maintenance free and ideal for remote locations.
The Hydrogen and Fuel cell solution though expensive, has a number of advantages. The power generated by PV solar is stored in the form of Hydrogen instead of storing in batteries. A single battery is used to maintain a steady current to Electrolyzer but bulk of the energy is stored in the form of Hydrogen. Another advantage with this system is that stored Hydrogen can also be used as a fuel for residential heating as well as to fuel your car.
Monday, March 19, 2012
How to power your home and fuel your car with Hydrogen?
There is a general opinion that Hydrogen is dangerous or explosive; people are often reminded of Hindenburg accident or Hydrogen bombs. Hydrogen is as safe as Gasoline or Butane gas. It should be handled with care like any combustible material. We have used Hydrogen in industries for so many decades and transported by pipelines across thousands of kilometers; the methods and procedures of handling Hydrogen is well established. It is a very light, colorless and odorless gas and it can easily escape into the atmosphere. Hydrogenation of vegetable oils for production of certain Margarines is one of the classical industrial examples of Hydrogen usage. When 100m3 Hydrogen is compressed to 10,000psi pressure, it is reduced to just 0.163 m3 by vlume.That is how the Hydrogen storage space is reduced in passenger cars. This volume of gas can give a mileage of 652 miles using Fuel cell power. The only emission is just pure water vapor! No noise, no smoke and it is entirely a new experience driving a Hydrogen Fuel cell car.
Powering your home with Hydrogen or fuelling your Fuel cell car is not very difficult. It is expensive compared to grid power for two simple reasons. Grid power is generated by power generation companies somewhere else using coal, oil or gas and transmitted across to millions of people.Therefore investment on power generation is shared by millions of people through their monthly energy bills. When you use the grid power, you do not pay any large sum except, a small deposit of few hundred dollars towards connection fee, and you pay your bills based on your monthly electricity usage.
But when you try to generate your own power using a solar panel or Fuel cell then you have to make an investment fully upfront. Of course your bank can help financing the system. However, when you calculate the energy cost over the life period of 25 years, you can clearly see the value of such investment. The grid power cost will only increase and never decrease while your generation cost will decrease as the time passes. The future energy cost is likely to increase substantially due to various factors. You can export surplus power to the grid and your payback time will be reduced as the energy cost increases.
The first step in powering your home is to calculate your power requirements accurately in terms of watt.hrs.How many appliances you will be using and how many hours you will using each of these appliances per day. Suppose you estimate 15,000 watt.hrs/day or 15kwhrs/day of power, and then a small Fuel cell consuming 1 Kg/day of Hydrogen or 30 kgs/month of Hydrogen will be sufficient to meet your power demands. Similarly you can calculate the amount of Hydrogen you will be using as a fuel for your Fuel cell car. For example if you will be driving your Fuel cell car for 1000 miles per month, then your Hydrogen requirement will be about 14 kgs/month. Your Hydrogen requirement per month for both power and car together will be 44 kgs only.
Your total power requirement to generate the above Hydrogen will be 2464 kwhrs/month costing less than $250 per month for both power and fuel. Of course, you need to calculate other fixed costs on the investment. You can export your solar power at a higher tariff to the Government and import your power requirement from the grid during off-peak season at a lower tariff and generate Hydrogen and store it. You can generate your power as and when you need, and you are in complete control of your situation, even if there is a blackout due to grid failure!
Sunday, March 18, 2012
Tame the Renewable with Hydrogen
The sun is bright and warm and your roof top solar panels and solar heaters are working hard to generate power and hot water. But the rate of power generated is too small to use immediately. The hot water is not hot enough for your shower. Your 200watt rooftop solar panel generates only 0.12 kwhrs after 5 hours of hard work. It does not meet your expectations. You expect 200 watts solar panel to generate about 1000 watt.hrs (1kwhr) in 5 hours. It is not happening. You don’t think renewable energy can meet your electricity demand.
There is a strong wind in the island and the wind turbines are rotating faster than usual but there are hardly any people living there. Wind turbine generates good power when the wind velocity is above certain level. But the electricity generated by the wind has no immediate takers.
There is a good rain this year and the dams are overflowing and the Hydro is generating surplus power but not many people are living near the catchment area. The power has to be transmitted hundred of kilometers to the nearby town through a sub-station. When the dams are dry there is hardly any power generation and power supply is rationed to the town.
When there is a demand for power Mother Nature does not offer the resources for power generation. When Mother Nature offers the resource we do not need power. This anomalous situation is the single largest obstacle that is undermining the potential of renewable energy. Of course, the high initial cost and half-hearted approach by Governments to offer subsidies or grants for renewable energy are other factors that add to the anomaly.
The only option to get over this situation is to store the energy 24x7 when it is generated and use them when we need them. It requires good storage technology, automation and information technology that can communicate with Natures energy resources and harness them, store them and deploy them judiciously and intelligently to meet our demands.
Current battery technology cannot be a long term sustainable solution; it is expensive, requires constant maintenance and replacement, which adds to the expensive initial investment on renewable systems. The best option is to generate Hydrogen on-site whenever sun shines or wind blows and store them under pressure that can be used as and when we require electricity using Fuel cell. It is easier to handle gas than stored electricity in batteries. Batteries are very heavy, has a limited life cycle and poses health hazard and not suitable for large scale power storage and not sustainable in the long run.
An Elecrolyzer can generate Hydrogen from water onsite whenever there is a sun or wind energy available and they can operate from 10% to 100% capacity depending upon the availability of renewable resources. The surplus power from Hydro can be converted into Hydrogen and stored. With so much advancement in information and communication technology, harnessing nature’s energy, storing them and deploying them in a timely manner is not major issue. Hydrogen can bridge the gap between Natural resource availability and human demand. This is what science is all about. We developed science by learning from Nature or duplicating Nature and Renewable energy is nothing different.
Subscribe to:
Posts (Atom)