Google analytics tag

Showing posts with label Greenhouse gases. Show all posts
Showing posts with label Greenhouse gases. Show all posts

Tuesday, June 19, 2012

Lithium batteries and Electric cars


All forms of renewable energy sources are intermittent by nature and therefore storage becomes essential. Energy is used mainly for power generation and transportation and the growth of these two industries are closely linked with development of energy storage technologies and devices. Electrical energy is conventionally stored using storage batteries. Batteries are electrochemical devices in which electrical energy is stored in the form of chemical energy, which is then converted into electrical energy at the time of usage. Batteries are key components in cars such as Hybrid electric vehicles, Plug-in Hybrid electrical vehicles and Electrical vehicles - all store energy for vehicle propulsion. Hybrid vehicle rely on internal combustion engine as the primary source of energy and use a battery to store excess energy generated during vehicle braking or produced by engine. The stored energy provides power to an electric motor that provides acceleration or provides limited power to the propulsion. Plug-in hybrid incorporates higher capacity battery than Hybrid eclectic vehicles, which are charged externally and used as a primary source of power for longer duration and at higher speed than it is required for Hybrid electric vehicles. In Electric cars, battery is the sole power source. All electric vehicles require rechargeable batteries with capacity to quickly store and discharge electric energy over multiple cycles. There are wide range of batteries and chemistries available in the market. The most common NiMH (Nickel Metal Hydride) used Cathode materials called AB5; A is typically a rare earth material containing lanthanum, cerium, neodymium and praseodymium; while B is a combination of nickel, cobalt, manganese and/or aluminum. Current generation Hybrid vehicles use several Kg of rare earth materials. Lithium ion battery offers better energy density, cold weather performance, abuse tolerance and discharge rates compared to NiMH batteries. With increasing usage of electrical vehicles the demand for lithium ion batteries and Lithium is likely to go up substantially in the coming years. It is estimated that a battery capable of providing 100miles range will contain 3.4 to 12.7 Kgs of Lithium depending upon the lithium-ion chemistry and the battery range. Lithium -ion batteries are also used in renewable energy industries such as solar and wind but Lead-acid batteries are now used widely due to lower cost. The lithium for Cathode and electrolyte is produced from Lithium Carbonate which is now produced using naturally occurring brines by solar evaporation with subsequent chemical precipitation. The naturally occurring brine such as in Atacama in Chile is now the main source of commercial Lithium. The brine is a mixture of various chlorides including Lithium chloride, which is allowed to evaporate by solar heat over a period of 18-20 months. The concentrated lithium chloride is then transferred to a production unit where it is chemically reacted with Sodium carbonate to precipitate Lithium Carbonate. Chile is the largest producers of Lithium carbonate. Though Lithium ion batteries are likely to dominate electric vehicle markets in the future, the supply of Lithium remains limited. Alternative sources of Lithium are natural ores such as Spodumene.Many companies around the world, including couple of companies in Australia are in the process of extracting Lithium from such ores. Manufacturers produce battery cells from anode, cathode and electrolyte materials. All lithium-ion batteries use some form of lithium in the cathode and electrolyte materials, while anodes are generally graphite based and contain no lithium. These cells are connected in series inside a battery housing to form a complete battery pack. Despite lithium’s importance for batteries, it represents a relatively small fraction of the cost of both the battery cell and the final battery cost. “Various programs seek to recover and recycle lithium-ion batteries. These include prominently placed recycling drop-off locations in retail establishments for consumer electronics batteries, as well as recent efforts to promote recycling of EV and PHEV batteries as these vehicles enter the market in larger numbers (Hamilton 2009). Current recycling programs focus more on preventing improper disposal of hazardous battery materials and recovering battery materials that are more valuable than lithium. However, if lithium recovery becomes more cost effective, recycling programs and design features provide a mechanism to enable larger scale lithium recycling. Another potential application for lithium batteries that have reached the end of their useful life for vehicle applications is in stationery applications such as grid storage. The supply chain for many types of batteries involves multiple, geographically distributed steps and it overlaps with the production supply chains of other potential critical materials, such as cobalt, which are also used in battery production. Lithium titanate batteries use a lithium titanium oxide anode and have been mentioned as a potential candidate for automotive use (Gains 2010), despite being limited by a low cell voltage compared to other lithium-ion battery chemistries.” (Ref: Centre for Transportation, Argonne National Laboratory) Usage of power for extraction of Lithium from naturally occurring brines is lower compared to extraction from mineral sources because bulk of the heat for evaporation of brine is supplied by solar heat. However Lithium ion batteries can serve only as a storage medium and the real power has to be generated either by burning fossil fuel or from using renewable energy sources. Governments around the world should make usage of renewable power mandatory for users of Electrical vehicles. Otherwise introduction of Lithium ion battery without such regulation will only enhance carbon emission from fossil fuels.

Thursday, May 17, 2012

Ammonia can substitute Gasoline


Ammonia is a well known industrial chemical that is manufactured worldwide as a precursor for the production of Urea. The chemistry and technology of Ammonia synthesis is well known and well established. It was a land mark achievement to fix atmospheric Nitrogen into the soil in the form of Urea as a fertilizer. It has 17.6% Hydrogen and 82.4% Nitrogen making it an ideal fuel for combustion when compared to Gasoline in terms of greenhouse gas emission because Ammonia no carbon. Handling free Hydrogen has always been a concern due to its explosive nature and lightness. Transportation of Hydrogen in the form of Ammonia is relatively cheaper and safer. A non-regulated Ammonia nursing tank at 265 psi pressure holds 3025kg Ammonia, containing 534kg Hydrogen, whereas a 5900 gallon Hydrogen tube trailer at 3200 psi pressure, contain only 350kgs of Hydrogen. Low pressure Ammonia tank with less than 25% volume contain more than 53% Hydrogen than a high pressure tube trailer. Ammonia has a lower volumetric energy density compared to other fuels.However, after subtracting energy required to elicit hydrogen from each fuel, hydrogen emerges with highest energy density compared to other fuels, and it is the only fuel which is carbon free. These qualities make Ammonia, a potential substitute for Gasoline. Ammonia need not be used as direct combustible fuel in internal combustion engines but it can be used as Hydrogen carrier safely and economically. The Hydrogen resulting from the decomposition of Ammonia can be used as fuel in a Fuel cell car as well as in a combustion engine. It can also be used to generate small onsite power using a Fuel cell or IC engine. For example, 534kg Hydrogen can generate Electricity up to 10 MW and up to 6Mw thermal energy using a Fuel cell. Currently ammonia is manufactured using fossil fuel source such as natural gas or naphtha to generate Hydrogen in the form of Syngas.But this can be effectively substituted with renewable source of Hydrogen such as Electrolysis of water using renewable solar thermal power or wind energy. Alternatively a biogas can be steam reformed to generate Hydrogen similar to natural gas. The generated Hydrogen can be compressed and stored. Nitrogen constitutes 79% of atmospheric air and it can be obtained by air liquefaction and separation by distillation or by simple membrane separation method to separate air into Nitrogen and Oxygen. The resulting Nitrogen can be compressed and stored for Ammonia sysnthsis.Production of Ammonia using Bosch Haber process is well known. Ammonia can be transported in pipelines, in tankers by road, rail or ship to various destinations. Ammonia can be readily be used as fuel using a spark ignited combustion engine with little modifications because Ammonia is classified as non-combustible fuel. Alternatively, it can be decomposed in a catalytic bed reactor and separated into Hydrogen and Nitrogen using PSA (pressure swing adsorption) system. The resulting Hydrogen can be stored to run a Fuel cell car similar to Honda FCX. Ammonia, as a Hydrogen carrier can substitute gasoline as an alternative fuel for transportation and power generation. All necessary technologies and systems are commercially available to make it a commercial reality.

Thursday, March 29, 2012

Will Bioethanol and Hydrogen replace Gasoline?

Many universities, research and development institutions and industries are studying various biological processes to produce Hydrogen using different sources of organic materials such as Starch, Glucose, Bioethanol and cellulosic materials. However many of these technologies are at “proof of concept’ stages. Moreover these processes depend upon location and availability of specific raw materials in these locations. For example, Brazil has been very successful in the production of Bioethanol form sugar cane molasses and using it as the fuel for cars. Brazil has also successfully utilized Bioethanol as a substitute for Naphtha as a feedstock for the production of Ethylne, a precursor for several plastics such as PVC and Polyethylene and Glycols. Bioethanol is a classic example of biological process than can successfully substitute Gasoline. Many industrial raw materials are also derived from Sugar cane and Corn Starch. The main issue in substituting Gasoline with bio-chemicals is political in many countries. India has been producing industrial alcohol from sugarcane molasses for number of years but they are not be able successfully substitute Gasoline with Alcohol.They have to fix the price of Alcohol in relation to the price of Gasoline or Naptha.This pricing mechanism is critical. We have been using coal as the raw material for several decades not only to generate power but also to produce host of organic chemicals and fertilizers such as Urea, coal tar chemicals such as dyes and pharmaceuticals. These industries later switched over to oil and Gas. Now the world is facing depletion of fossil fuels at a faster rate. Greenhouse emission and global warming threats are looming large. There is a clear sign that the energy prices will sharply increase in the near future. Renewable energy projects are at early stages and their initial costs and cost of productions are much higher compared to fossil fuel based power generation. However biological processes and biofuels offer a glimpse of hope to get over the energy crisis and also to mitigate greenhouse gas emissions. Production of Biohydrogen using bio-organic materials such as starch, glucose and cellulosic materials are under development, but it may be a decade before they can be successfully commercialized. But production of Bioethanol and Biogas are well-known technologies. Generation of Biogas from agricultural waste, food waste and municipal solid waste and waste water are known technologies. However Methane the major constituents of biogas,is a potential greenhouse gas.The Biogas can be easily cleaned from other impurities such as Carbon dioxide and Hydrogen sulfide and can be readily converted to Hydrogen gas by steam reformation. This will substantially increase the energy efficiency of Biogas plants. Many developing countries can adopt these technologies on a wider scale and promote Bioethenaol and Biogas generation to substitute petroleum oil and gas. They can convert Gasoline cars into 100% Bioethanol (anhydrous) or blended with gasoline fuels for cars.These technologies are commercially available.Number of countries in Asia, Africa and South America produce starches such as Tapioca starch for industrial applications.Vegetable oils such as Jatropa and Castor oils are excellent for bio-fuels and lubricants.Though it is theoretically possible to substitute most of the petrochemicals with bio-organic materials,it is important that food products such as corn should not be diverted for commercial applications such as fuel. The coming decade will be a challenging one and Hydrogen generation from various biological organic materials can substitute fossil fuels at a much faster rate. A judicial mix of bio-energy and renewable energy such as solar and wind should help the world to overcome the challenges.