Google analytics tag

Monday, August 25, 2014

How sustainable is our sustainability?


Sustainability can be defined as the ability to meet present needs without disturbing Nature’s equilibrium by a holistic approach while not compromising the ability of the future generation to continue to meet their needs. Holistic is “Characterized by the belief that the parts of something are intimately interconnected and explicable only by reference to the whole” (Wikipedia). Mathematically and scientifically any exponential growth or consumption will not be sustainable and such growth will eventually be curtailed by forces of Nature. Unfortunately current models of sustainability do not take a holistic approach but focus only on a continuous growth or expansion to meet the demands of the growing human population thus disturbing the Nature’s equilibrium. The holistic approach is essential because our world is interconnected and any isolated growth or development in one part of the world will affect the other part of the world. Such a growth is counter-productive to human civilization as a whole. At the same time Nature’s equilibrium is critical for the survival of humanity and science should take into account this critical issue while developing solutions to problems. Otherwise such a solution will not be sustainable in the long run. Nature maintains a perfect equilibrium (dynamic equilibrium) while maintaining reversibility. Both are intricately linked. If the equilibrium is not maintained then it becomes an irreversible process and the entropy of such a system will only increase according to the second law of thermodynamics. The order will become disorder or lead to chaos. Moreover any human interference to nature’s irreversibility and equilibrium by human beings will require energy. Any energy generation process within the system will not be holistic and therefore will not be sustainable. For example, reverse osmosis (RO) is a major industrial process currently used to desalinate sea water/brackish water to potable water. This process is reversing the Nature’s osmotic process by applying a counter pressure over and above the osmotic pressure of the saline water using high pressure pump. This requires energy in the form of electrical energy or thermal energy in the case of distillation. When such energy is generated by burning fossil fuel then the entropy increases because combustion of fossil fuel is an irreversible process. It is clearly not sustainable. Energy is directly connected with economic growth of the world, but Governments and industries failed to adopt a holistic approach while generating energy by simply focusing only on economic growth. The fossil fuel power generation has resulted in the accumulation of GHG in the atmosphere and in the ocean changing the climate. Power generation by nuclear plant (Fukushima) has spilled radiation into the ocean and has crossed the Pacific Ocean to shores of North America. These are irreversible changes. The human and economic costs from such pollution will easily dwarf the ‘the economic growth’ of the world. It is not holistic because the emissions caused by one country affects the whole world; then it becomes the right of an individual to object to such pollution and it is the obligation of the Governments, United Nations and the industries to protect individuals from such pollution. Right now all these agencies are helplessly watching the deteriorating situation because they do not have the solution or means to reverse the situation whether it is an advanced country or a poor country; we always measure growth only by income and not by the quality of air we breathe in or water we drink or the environment we live in. The demand for energy and water are constantly increasing all over the world; and we are trying to meet these demands by expanding existing power plants or by setting up new plants. When we generate power using fossil fuel the heat energy is converted into electrical energy and the products of combustion are let out into the atmosphere in the form of CO2 and Oxides of Nitrogen. It is an irreversible process and we cannot recover back the fossil fuel already burnt. Similarly the electricity generated once used to do some useful work such as lighting or running a motor etc cannot be recovered back. The process of electricity generation as well as usage of electricity is irreversible. Similarly when it rains the water percolates into the ground dissolving all the minerals, sometimes excessively in some places making it unsuitable to drink or irrigate. This process can be reversed but it again requires energy. Both the above processes are irreversible and thermodynamically they will increase the entropy of the system. Any energy generation process will have cost implications and therefore irreversibility and entropy are directly linked with economics. Fortunately renewable energy sources offer hope to humanity. Even though the entropy is increased due to its irreversible nature there is no depletion of energy (sun shines everyday). Only Nature can come to human rescue to our sustainability. Science and powerful economies cannot guarantee sustainability irrespective of the size of the budget. There is a myth that billions of dollars can reverse the irreversibility with no consequences. It raises question on the very basis of science because science depends on “observation and reproduciability” as we know. The biggest question is: “Who is the Observer and what is observed”? When sages of the East such as Ramana Maharishi raises this question, the Science has clearly no answer and the world is blindly and inevitably following the West to the point of no return. .

Friday, June 6, 2014

The science and politics of carbon and climate change


President Obama seized his ‘moment of truth’ when he announced his decision to cut carbon emission by 30% by 2030 in USA. His decision may not be popular in USA and in many parts of the world but it is the right decision. He was able to address to some extent ‘ the ínconvenient truth’ that has been nagging him during his second term in office. He introduced his decision through EPA (Environmental protection authority) effectively bypassing congress. In fact the whole purpose of creating EPA was to address the environmental issues but it failed in many ways and rest of the world followed such failures time and again. This has resulted in an accumulated carbon both in the atmosphere and in the sea in an unprecedented scale causing disease and environmental degradation world-wide. Air pollution is costing the world's most advanced economies plus India and China $3.5 trillion per year in lives lost and ill health, with a significant amount of the burden stemming from vehicle tailpipes, according to a report by the Organisation for Economic Co-operation and Development (OECD). In the 34 OECD member states, the monetary impact of death and illness due to outdoor air pollution was $1.7 trillion in 2010. Research suggests that motorized on-road transport accounts for about 50 percent of that cost. In China, the total cost of outdoor air pollution was an estimated $1.4 trillion in 2010. In India, the OECD calculated the toll at $500 billion. The costs were calculated based on survey data of how much people are willing to pay in order to avoid premature death due to ailments caused by air pollution. The methodology assigns a cost to the risks of emissions that decision makers can use in weighing public policy decisions. In addition to the health cost the environmental degradation due to carbon pollution includes global warming resulting in mass extinction of species, causing mega bush fires that are wiping out forests including rain forests, creating new bugs that are resistant to antibiotics, increasing sea level that erodes coastal cities and submerge remote islands in pacific displacing millions of people as refugees, acidifies oceans with massive extinction of species including fish stock. Such degradation is nothing but suicidal. When a food or drug is introduced in the market it is subject to scrutiny by FDA (Food and drugs authority), but when it comes to environmental clearance to set up a coal-fired power plant or to set up a seawater desalination plant it is relatively easier to get such clearance from EPA. When power plants emitted gaseous emissions initially EPA was able to limit the emissions of oxides of nitrogen, sulphur, phosphorous, soot and particulate matter , other organics including mercury and arsenics except carbon dioxide. Carbon dioxide has been accepted as part of the air we breathe in; otherwise no power plant could have been approved because bulk of the emissions are only carbon dioxide. Had EPA acted timely in sixties or even in seventies to curb CO2 emissions an alternative energy would have emerged by this time. Industries and economics were high in the political agenda and the environment was overlooked. Many drugs were introduced during this period to cure diseases that were actually caused by environmental pollution such as carbon dioxide. Both power industries and drug industries grew side by side without realizing the fact that environment is degraded slowly which causes chronic diseases. Australia is the largest consumers of power in terms of per capita consumption in the world and yet the new Government in Australia is pushing a bill in the parliament to repel Carbon tax introduced by previous Government. They are also planning to raise revenue up to $ 26 billion for medical research over a period of time. On one hand politicians want to freely allow unabated carbon emissions into the atmosphere and on the other hand they want to introduce new drugs that can cure diseases actually caused by such pollutions. It is an anomalous situation created by politics of climate change. Unfortunately carbon pollution has turned into an energy related issue and attracted political attention world-wide. The high cost of cleaning carbon pollution has turned many politicians into skeptics of science on carbon pollution and climate change. “More than 170 nations have agreed on the need to limit fossil fuel emissions to avoid dangerous human-made climate change, as formalized in the 1992 Framework Convention on Climate Change .However, the stark reality is that global emissions have accelerated (Fig. 1) and new efforts are underway to massively expand fossil fuel extraction by drilling to increasing ocean depths and into the Arctic, squeezing oil from tar sands and tar shale, hydro-fracking to expand extraction of natural gas, developing exploitation of methane hydrates, and mining of coal via mountaintop removal and mechanized long wall mining. The growth rate of fossil fuel emissions increased from 1.5%/year during 1980–2000 to 3%/year in 2000–2012, mainly because of increased coal use.” (Ref : 1) The coal usage continues to grow especially in Asia due to expanding population and industrial growth and demand for low cost energy. USA is expected to achieve energy independence by 2015 which means more fossil fuels are in the pipeline. India and China are planning more coal fired power plants in the coming decade. Australia is planning for massive expansion of coal and LNG and Coal seam methane gas for exports. Fracturing and hydrocracking of shale deposits are adding to the fuel. Countries are more concerned with economic growth than the consequences of climate change. Despite recent warning from NASA that the depleting arctic glaciers have reached a ‘point of no return’ and the predicted sea level rise up to 10 feet is irreversible, there is a little reaction from countries across the globe. There is a clear evidence that shows GHG emission will continue to increase in the future in spite of growing renewable energy projects because renewable solar panels, wind turbines and batteries will require additional power from fossil fuels. It is critically important to reduce carbon emission with great urgency by substituting fossil energy with renewable energy. For example, concentrated solar power (CSP) can be used instead of large scale PV solar to reduce carbon footprint. Solar energy is the origin of all other energy sources on the planet earth and solar energy will be the solution for a clean energy of the future. But how fast solar energy can be deployed commercially in a short span of time is a big issue. The increasing growth of fossil fuel production dwarfs the growth of renewable energy exposing the planet to catastrophic climate change. The GHG emission can be contained only by an aggressive reduction of CO2 emission into the atmosphere as well as by drastic reduction of fossil fuel production. This is possible only by using renewable Hydrogen. The cost of renewable hydrogen is high but this is the price one has to pay to clean up the carbon pollution before the climate is changed irreversibly. The obvious method to reduce carbon emissions is to tax carbon in such a way that it will no longer be economically viable to emit carbon to generate power or to transport. Paying carbon tax will be cheaper than paying for diseases and environmental degradation and natural disasters. Clean environment is the key for the survival of our planet and life on earth and one cannot put a price on such a life. Ref 1: Citation: Hansen J, Kharecha P, Sato M, Masson-Delmotte V, Ackerman F,et al (2013) Assessing ‘‘Dangerous Climate Change’’: Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature. PLoS ONE 8(12): e81648. doi:10.1371/journal.pone.0081648