Google analytics tag

Showing posts with label Liquid Hydrogen. Show all posts
Showing posts with label Liquid Hydrogen. Show all posts

Friday, July 19, 2019

Renewable Hydrogen, an emerging alternative to fossil fuel

Fossil fuels such as coal, oil and gas have helped transformed our power and transport industries for decades till now. But recent geo-political situations, depleting fossil sources and Carbon pollution, global warming and climate change have raised serious questions about the future of fossil fuels. However, countries who have massively invested in fossil fuel infrastructure and who have been heavily relying on supply of fossil fuels have started realizing an inescapable truth that they are running out of time to find an alternative to fossil fuels. Recently Hydrogen has been suggested as an alternative source of energy and many countries are gearing up to promote Hydrogen on a massive scale. The countries who have been traditionally using fossil fuels are now focussing on generating hydrogen from fossil fuels as an easier option. But the basic problem with this approach is they still depend on fossil fuels which means they still contribute to Carbon emission and climate change. They can conveniently dispute or deny the fact that man-made Carbon emissions cause global warming in order to score political points among the ‘gullible public’. Democracy is all about numbers and as along as these number stack up the political parties will take advantage of the system and try to push their agenda. But all these efforts are only short term and they still cannot escape the truth that man made Carbon emission is transforming our world for the worst and the future looks bleak. However, there is a silver lining in the dark clouds of global warming and climate change in the form of renewable Hydrogen. It is now possible to generate Hydrogen using renewable energy sources such as Hydro, solar, wind, geothermal and OTEC (ocean thermal energy conversion systems) that can used not only decarbonize our present economy and also has the capacity to transform future energy and to a cleaner and more sustainable environment. It is now possible to achieve a circular economy in energy sector which means the CO2 emission from existing and operating power plants using fossil fuels can be reversed using renewable Hydrogen so that one can continue to generate power but with Zero Carbon emission. This is a huge transformation. However, the usage of fossil fuels will continue in other industries such as petrochemicals, polymers and additives, and other synthetic materials. But one can take advantage of using renewable Hydrogen even in such industries using Green Chemistry initiatives so that they can become more sustainable. However Renewable Hydrogen is currently very expensive though it is generated from abundantly available natural resources such as sun, wind and water because PV solar panels are made from high purity silicon material again made from simple sand. We cannot afford to take natural resources lightly because they are precious commodities. With limited usage of renewable energy at current levels the cost of PV solar panels is still very expensive but likely to come down as we deploy more and more solar panels in the future. We should also be careful how we use renewable Hydrogen. Our first and foremost usage of renewable Hydrogen should be to decarbonize the fossil economy and achieve a circular economy. It means we must convert CO2 emissions into renewable natural gas (RNG) using renewable Hydrogen so that the Carbon can be recycled indefinitely with Zero Carbon emission while power plants using fossil fuels can continue to generate a base load power. By this way we will be able to address two issues namely meeting the rising energy demand at a cheaper price while eliminating global warming and climate change. All other use of renewable hydrogen such as Hydrogen vehicles for transportation using fuel cell etc will be secondary because they are not our priority. If we can generate a base load power (24 x7) using renewable Hydrogen with zero Carbon emission, then that should be our focus whether we believe it climate science or not. This will also help us conserve fossil fuels that may be rarely used to meet certain critical needs while substantially reducing the carbon emission. Renewable hydrogen will require massive deployment of renewable energy projects all over the world. One can generate renewable energy and use it directly for domestic or commercial use. But they are intermittent and require large scale energy storage. Moreover, all HT transmission lines are old and designed for transmitting base load power. Such an approach will not help decarbonizing fossil economy currently widely used. That is why renewable Hydrogen will have to play a key role in the future energy mix. Renewable hydrogen can be used as a fuel for transport industries using fuel cell and Japan is leading the way in this field. But such an application has along way to go and it requires massive investment and creation of infrastructure by way of filling stations. Countries like Japan do not have vast land area for solar industries, and they are likely to use cheap nuclear power and sea water to generate large scale hydrogen infrastructure. By this way they can supply power to both hydrogen as well as electric (battery) vehicles. Alternatively, they are looking to import liquified hydrogen (LH2) from countries like Australia who are ready to use cheap brown coal to generate Hydrogen by gasification despite CO2 emissions. Currently Australian government is very keen to encourage LH2 from cheap coal. They have already approved a pilot plant in the state of Victoria and only future can tell whether such a decision is prudent or not. Japanese companies may prefer to invest in Australia to generate and export clean liquid hydrogen leaving behind all emissions including CO2 in Australia. They may generate LH2 from natural gas and export it to Japan, but it may not be acceptable by Japanese companies because it has a potential to poison the Platinum catalyst used in their Fuel cell cars. In fact, Australia has an enormous potential to generate renewable hydrogen and then use it locally as well as to export. This will be more sustainable in the long run.

Monday, February 27, 2012

Fuel your car with Water

This article provides an overview on Hydrogen cars and how we can generate renewable hydrogen to fuel these cars. There are two well known brands of Hydrogen based cars already in the market, BMW7 and Honda FCX Clarity models. BMW7 works on Hydrogen Internal Combustion engine fuelled by Liquid Hydrogen. It is a 6 Liters V12 engine with 191Kw capacity and 390 N of torque. It offers 100km from 50 Liters of Liquid Hydrogen with a density of about 70-80gms/lit and and offers 100kms from Gasoline of 16.7 liters. It has a capacity of 170 liters for liquid Hydrogen storage at the rear end of the car. It can run both on Hydrogen as well as on Gasoline. Liquid hydrogen has a better power density but liquefaction is a cryogenic technology and consumes power for liquefaction. The storage tank also is of special construction because Liquid Hydrogen is stored at -253C. Honda FCX Clarity car is fuel cell car fuelled by compressed Hydrogen gas. It offers 100kms for 3.5 lits of Hydrogen (at 5000 psi pressure with density at 30gms/lit.). It has Hydrogen storage of 3.92kgs kgs with a total mileage of 240miles. Increasing Hydrogen storage gas pressure up to 10000psi, the Hydrogen power density is considerably increased making it comparable with liquid Hydrogen. Moreover fuel cell car is silent while driving because there is no combustion engine. BMW is able to use their existing conventional internal combustion engine with slight modifications suitable for Hydrogen so that they can use their existing infrastructure. But Honda FCX uses proton exchange membrane Fuel cell. It is an electrochemical device that converts Hydrogen into electricity which runs the motor for transmission of power. It is similar to an electric car in which power is stored in batteries and used to drive the motor for transmission. The only difference is the power is generated in Fuel cell car as and when hydrogen is supplied whereas in Electric cars, power is drawn from stored energy from the battery. We can inject pure Hydrogen along with Gasoline, CNG or LPG to assist the combustion to save fuel consumption up to 30% and to reduce harmful emissions. The conventional gasoline cars can be fitted with water electrolyzer to generate Hydrogen using the car battery. The electrolyzer currently sold in the market is quite different. They generate ‘water gases’ and not pure Hydrogen. They electrolyze water using pulsating DC current which essentially breaks down water into Hydrogen and oxygen molecules. The complete mixture of Hydrogen, Oxygen and undissociated water molecules are injected into fuel manifold of the car. The hydrogen will assist in the process of combustion to certain extend and help save the fuel consumption of gasoline. Renewable Hydrogen is a potential source for fuelling automobiles. One can use solar panels and simple tap water to generate hydrogen gas and store them under high pressure in cylinders. We will be releasing an eBook in the near future to design a suitable Renewable Hydrogen system and install them at homes and businesses for power generation as well as to fuel two stroke engines such as scooters and bikes. Initially the book will offer DIY kits to design and install power generation for homes and businesses up to 10Kw capacity electricity generation. We will be conducting trials on two stroke engines using renewable Hydrogen to get approvals from appropriate transport authorities for safety and usage on Indian roads. Hydrogen can be safely handled as long as we take appropriate safety measures as we normally do while handling petroleum products like gasoline or butane gas. It may look like a daunting task to fuel a car with Hydrogen gas but in reality, all necessary equipments and systems are commercially available including High pressure Carbon fiber tanks fully tested and approved.