Google analytics tag

Showing posts with label parabolic solar collectors. Show all posts
Showing posts with label parabolic solar collectors. Show all posts

Monday, August 19, 2013

Clean power and water for remote island communities


Most of the renewable energy projects that are currently set up around the world are grid connected with feed-in power tariff arrangement. People can generate their own electricity by solar/wind to meet their demand and supply the surplus power to the grid at an agreed power rates. They can also draw power from the grid if there is any short fall in their production of renewable energy. It is two way traffic. There is an opportunity for people to generate revenue by sale of surplus power. It is an incentive for people to invest on renewable energy and that is why the investment on renewable energy has steadily increased over a period of time. But this is not the case with many developing and under developed countries. The situation is still worse in many islands where there is no centralized power generation at all or power distribution through grids. They depend on diesel generators. Even to transport diesel from mainland they have to use diesel operated boats. They have no drinking water even though they are surrounded by sea. I happened to visit a remote island in PNG few years ago and saw the plight of those people first hand. They live in absolute poverty and nobody cares to provide them a solution. Their voices are never heard and permanently drowned in the deafening roar of the sea. The problems of supplying clean power and water to these remote islands are not only political but also technical and commercial in nature. One has to use only commercially available systems and components which are basically meant for a single or three phase grid connected power supplies. Even though renewable energy sources basically generate only direct current (DC), one has to convert them into alternate current (AC) for easy distribution and to utilize appliances which are basically designed for AC operations. Isolated communities like islands can use direct current and also use DC operated appliances because they are commercially available and they are more efficient. Anyhow most of the house appliances need DC supply and AC/DC converters are commonly used for this purpose thus sacrificing efficiency in the process. They also need better storage solutions because they are not connected to the grid and they have to necessarily store power for several days. Some of these islands are connected with inefficient wind turbines backed by diesel generators. It is an absolute necessity to incorporate a long term storage capabilities in the system if one has to provide a continuous power and clean water. If the wind velocity is not sufficient (during off seasons) or if there is no sun (cloudy) for days together and if there is not sufficient storage capacity, then all the investment made on the project will be of no use. Any half baked solutions will not serve the real purpose. There are also commercial problems because a well designed system will cost more, which will eventually increase the power tariff. Unless the Government subsidizes the power sufficiently, people cannot afford to pay for their electricity or water. It requires a careful planning and community consultations to set up a ‘stand alone renewable energy projects in islands’. Governments in the pacific islands should act with great urgency because there is also a risk of inundation by sea level rising due to global warming. We are in the process of designing a solution to provide such islands with clean power, clean drinking water and even wireless connectivity for schools so that children can get education. It may sound ambitious but it is the first step one has to take into long journey of sustainability and self reliance by these isolated communities. There is a good possibility that such island may one day become completely independent and self sufficient with clean power and water. The same solution can be implemented in other countries too. Many countries have necessary infrastructure to generate and distribute power yet they suffer regular power cuts and black outs due to inefficiencies in their system. Our proposed solution can provide uninterrupted clean power and water because the system will have long duration centralized energy storage. We have made a detailed analysis of various alternatives available for the above purpose using Homer hybrid solution software. The solution proposes a PV solar with storage solutions using battery bank as well as Fuel cell back up. The solution also proposes long duration of storage ranging from few hours up to a fortnight .It is a standalone system with complete energy management and suitable for remote operations. The solution can also incorporate wind turbine in addition to PV solar depending upon the location and wind velocity profile. The model is to supply clean power and drinking water for 600 families with an average 3 people in a family. The system will supply power at the rate of 1.50kwhrs/day/person (1800 x1.5 = 2700kwhrs/day) and drinking water at the rate of 200 lits/day/person (1800 x 200 lit/person= 360,000 lits/day).The power for a desalination plant will be 1980 kwhrs/day. The system is designed for a total power generation capacity of 4680Khwhrs/day. The model is based on battery storage as well as based on Hydrogen storage with varying durations. Comparative analysis is shown in the figures. The first window is based on PV solar with 2 months Hydrogen autonomy. The third window is based on PV solar with battery 5 days and 17 hrs Hydrogen autonomy. The fourth and fifth window is based on PV solar with battery 17 hrs and Hydrogen 18 hrs storage autonomy with varying panel cost. The sixth window is based on PV solar with 172 hrs (one week) battery autonomy. The resulting analysis indicates that a centralized Hydrogen storage with Fuel cell back up offers the most economical solution even though the power tariff is higher than a system with battery storage. The investment for long duration battery storage is almost double that of Hydrogen based solution. The cost can further be reduced if and when the Electrolyzers as well as Fuel cells are manufactured on mass scale. The added advantage with this system is it can also provide Hydrogen fuel for Fuel cell cars and boats substituting diesel. One day it may become a reality that these isolated islands can become completely self- sufficient in terms of water, fuel and power with no greenhouse gas emissions. This solution can be replicated to all the islands all over the world. Note: The above system can also be installed in many developing countries in Africa which is an emerging market. An Africa-Australia Infrastructure Conference will be be held in Melbourne, Australia on 2-3 September 2013 and it will offer a platform for Australian companies to invest in Africa on infrastructural projects.

Tuesday, January 15, 2013

Solar thermal- a cool solution for a warming planet

It is a fact that solar energy is emerging as a key source of future energy as the climate change debate is raging all over the world. The solar radiation can meet world’s energy requirement completely in a benign way and offer a clear alternative to fossil fuels. However the solar technology is still in a growing state with new technologies and solutions emerging. Though PV solar is a proven technology the levelised cost from such plants is still much higher than fossil fuel powered plants. This is because the initial investment of a PV solar plant is much higher compared to fossil fuel based power plants. For example the cost of a gas based power plant can be set up at less than $1000/Kw while the cost of PV solar is still around $ 7000 and above. However solar thermal is emerging as an alternative to PV solar. The basic difference between these two technologies is PV solar converts light energy of the sun directly into electricity and stores in a battery for future usage; solar thermal plants use reflectors (collectors) to focus the solar light to heat a thermic fluid or molten salt to a high temperature. The high temperature thermic fluid or molten salt is used to generate steam to run a steam turbine using Rankine cycle or heat a compressed air to run a gas turbine using Brayton cycle to generate electricity. Solar towers using heliostat and mirrors are predicted to offer the lowest cost of solar energy in the near future as the cost of Heliostats are reduced and molten salts with highest eutectic points are developed. The high eutectic point molten salts are likely to transform a range of industries for high temperature applications. When solar thermal plants with molten salt storage can approach temperature of 800C, many fossil fuel applications can be substituted with solar energy. For example, it is expected by using solar thermal energy 24x7 in Sulfur-Iodine cycle, Hydrogen can be generated on a large commercial scale at a cost @2.90/Kg.Research and developments are focused to achieve the above and it may soon become a commercial reality in the near future. “The innovative aspect of CSP (concentrated solar power) is that it captures and concentrates the sun’s energy to provide the heat required to generate electricity, rather than using fossil fuels or nuclear reactions. Another attribute of CSP plants is that they can be equipped with a heat storage system in order to generate electricity even when the sky is cloudy or after sunset. This significantly increases the CSP capacity factor compared with solar photovoltaics and, more importantly, enables the production of dispatchable electricity, which can facilitate both grid integration and economic competitiveness. CSP technologies therefore benefit from advances in solar concentrator and thermal storage technologies, while other components of the CSP plants are based on rather mature technologies and cannot expect to see rapid cost reductions. CSP technologies are not currently widely deployed. A total of 354 MW of capacity was installed between 1985 and 1991 in California and has been operating commercially since then. After a hiatus in interest between 1990 and 2000, interest in CSP has been growing over the past ten years. A number of new plants have been brought on line since 2006 (Muller- Steinhagen, 2011) as a result of declining investment costs and LCOE, as well as new support policies. Spain is now the largest producer of CSP electricity and there are several very large CSP plants planned or under construction in the United States and North Africa. CSP plants can be broken down into two groups, based on whether the solar collectors concentrate the sun rays along a focal line or on a single focal point (with much higher concentration factors). Line-focusing systems include parabolic trough and linear Fresnel plants and have single-axis tracking systems. Point-focusing systems include solar dish systems and solar tower plants and include two-axis tracking systems to concentrate the power of the sun. Parabolic trough collector technology: The parabolic trough collectors (PTC) consist of solar collectors (mirrors), heat receivers and support structures. The parabolic-shaped mirrors are constructed by forming a sheet of reflective material into a parabolic shape that concentrates incoming sunlight onto a central receiver tube at the focal line of the collector. The arrays of mirrors can be 100 meters (m) long or more, with the curved aperture of 5 m to 6 m. A single-axis tracking mechanism is used to orient both solar collectors and heat receivers toward the sun (A.T. Kearney and ESTELA, 2010). PTC are usually aligned North-South and track the sun as it moves from East to West to maximize the collection of energy. The receiver comprises the absorber tube (usually metal) inside an evacuated glass envelope. The absorber tube is generally a coated stainless steel tube, with a spectrally selective coating that absorbs the solar (short wave) irradiation well, but emits very little infrared (long wave) radiation. This helps to reduce heat loss. Evacuated glass tubes are used because they help to reduce heat losses. A heat transfer fluid (HTF) is circulated through the absorber tubes to collect the solar energy and transfer it to the steam generator or to the heat storage system, if any. Most existing parabolic troughs use synthetic oils as the heat transfer fluid, which are stable up to 400°C. New plants under demonstration use molten salt at 540°C either for heat transfer and/or as the thermal storage medium. High temperature molten salt may considerably improve the thermal storage performance. At the end of 2010, around 1 220 MW of installed CSP capacity used the parabolic trough technology and accounted for virtually all of today’s installed CSP capacity. As a result, parabolic troughs are the CSP technology with the most commercial operating experience (Turchi, et al., 2010). Linear Fresnel collector technology: Linear Fresnel collectors (LFCs) are similar to parabolic trough collectors, but use a series of long flat, or slightly curved, mirrors placed at different angles to concentrate the sunlight on either side of a fixed receiver (located several meters above the primary mirror field). Each line of mirrors is equipped with a single-axis tracking system and is optimized individually to ensure that sunlight is always concentrated on the fixed receiver. The receiver consists of a long, selectively-coated absorber tube. Unlike parabolic trough collectors, the focal line of Fresnel collectors is distorted by astigmatism. This requires a mirror above the tube (a secondary reflector) to refocus the rays missing the tube, or several parallel tubes forming a multi-tube receiver that is wide enough to capture most of the focused sunlight without a secondary reflector. The main advantages of linear Fresnel CSP systems compared to parabolic trough systems are that: LFCs can use cheaper flat glass mirrors, which are a standard mass-produced commodity; LFCs require less steel and concrete, as the metal support structure is lighter. This also makes the assembly process easier. »»The wind loads on LFCs are smaller, resulting in better structural stability, reduced optical losses and less mirror-glass breakage; and. »»The mirror surface per receiver is higher in LFCs than in PTCs, which is important, given that the receiver is the most expensive component in both PTC and in LFCs. These advantages need to be balanced against the fact that the optical efficiency of LFC solar fields (referring to direct solar irradiation on the cumulated mirror aperture) is lower than that of PTC solar fields due to the geometric properties of LFCs. The problem is that the receiver is fixed and in the morning and afternoon cosine losses are high compared to PTC. Despite these drawbacks, the relative simplicity of the LFC system means that it may be cheaper to manufacture and install than PTC CSP plants. However, it remains to be seen if costs per kWh are lower. Additionally, given that LFCs are generally proposed to use direct steam generation, adding thermal energy storage is likely to be more expensive. Solar to Electricity technology: Solar tower technologies use a ground-based field of mirrors to focus direct solar irradiation onto a receiver mounted high on a central tower where the light is captured and converted into heat. The heat drives a thermo-dynamic cycle, in most cases a water-steam cycle, to generate electric power. The solar field consists of a large number of computer-controlled mirrors, called heliostats that track the sun individually in two axes. These mirrors reflect the sunlight onto the central receiver where a fluid is heated up. Solar towers can achieve higher temperatures than parabolic trough and linear Fresnel systems; because more sunlight can be concentrated on a single receiver and the heat losses at that point can be minimized. Current solar towers use water/steam, air or molten salt to transport the heat to the heat-exchanger/steam turbine system. Depending on the receiver design and the working fluid, the upper working temperatures can range from 250°C to perhaps as high 1 000°C for future plants, although temperatures of around 600°C will be the norm with current molten salt designs. The typical size of today’s solar power plants ranges from 10 MW to 50 MW (Emerging Energy Research, 2010). The solar field size required increases with annual electricity generation desired, which leads to a greater distance between the receiver and the outer mirrors of the solar field. This results in increasing optical losses due to atmospheric absorption, unavoidable angular mirror deviation due to imperfections in the mirrors and slight errors in mirror tracking. Solar towers can use synthetic oils or molten salt as the heat transfer fluid and the storage medium for the thermal energy storage. Synthetic oils limit the operating temperature to around 390°C, limiting the efficiency of the steam cycle. Molten salt raises the potential operating temperature to between 550 and 650°C, enough to allow higher efficiency supercritical steam cycles although the higher investment costs for these steam turbines may be a constraint. An alternative is direct steam generation (DSG), which eliminates the need and cost of heat transfer fluids, but this is at an early stage of development and storage concepts for use with DSG still need to be demonstrated and perfected. Solar towers have a number of potential advantages, which mean that they could soon become the preferred CSP technology. The main advantages are that: »»The higher temperatures can potentially allow greater efficiency of the steam cycle and reduce water consumption for cooling the condenser; »»The higher temperature also makes the use of thermal energy storage more attractive in order to achieve schedulable power generation; and »»Higher temperatures will also allow greater temperature differentials in the storage system, reducing costs or allowing greater storage for the same cost. The key advantage is the opportunity to use thermal energy storage to raise capacity factors and allow a flexible generation strategy to maximize the value of the electricity generated, as well as to achieve higher efficiency levels. Given this advantage and others, if costs can be reduced and operating experience gained, solar towers could potentially achieve significant market share in the future, despite PTC systems having dominated the market to date. Solar tower technology is still under demonstration, with 50 MW scale plant in operation, but could in the long-run provide cheaper electricity than trough and dish systems (CSP Today, 2008). However, the lack of commercial experience means that this is by no means certain and deploying solar towers today includes significant technical and financial risks. Sterling dish technology: The Stirling dish system consists of a parabolic dish shaped concentrator (like a satellite dish) that reflects direct solar irradiation onto a receiver at the focal point of the dish. The receiver may be a Stirling engine (dish/ engine systems) or a micro-turbine. Stirling dish systems require the sun to be tracked in two axes, but the high energy concentration onto a single point can yield very high temperatures. Stirling dish systems are yet to be deployed at any scale. Most research is currently focused on using a Stirling engine in combination with a generator unit, located at the focal point of the dish, to transform the thermal power to electricity. There are currently two types of Stirling engines: Kinematic and free piston. Kinematic engines work with hydrogen as a working fluid and have higher efficiencies than free piston engines. Free piston engines work with helium and do not produce friction during operation, which enables a reduction in required maintenance. The main advantages of Stirling dish CSP technologies are that: »»The location of the generator - typically, in the receiver of each dish - helps reduce heat losses and means that the individual dish-generating capacity is small, extremely modular (typical sizes range from 5 to 50 kW) and are suitable for distributed generation; »»Stirling dish technologies are capable of achieving the highest efficiency of all type of CSP systems »»Stirling dishes use dry cooling and do not need large cooling systems or cooling towers, allowing CSP to provide electricity in water-constrained regions; and »»Stirling dishes, given their small foot print and the fact they are self-contained, can be placed on slopes or uneven terrain, unlike PTC, LFC and solar towers. These advantages mean that Stirling dish technologies could meet an economically valuable niche in many regions, even though the levelised cost of electricity is likely to be higher than other CSP technologies. Apart from costs, another challenge is that dish systems cannot easily use storage. Stirling dish systems are still at the demonstration stage and the cost of mass-produced systems remains unclear. With their high degree of scalability and small size, stirling dish systems will be an alternative to solar photovoltaics in arid regions.” (Source : IRENA 2012)