Google analytics tag

Thursday, August 2, 2012

Global warming and man-made greenhouse gas.


There is a raging debate going on around the world especially in US about the global warming and its causes, among scientists and the public alike. When IPCC released its findings on the connection between greenhouse gas emission and the global warming and its disastrous consequences, there was an overwhelming disbelief and skepticism in many people. In fact many scientists are skeptical even now about these findings and many of them published their own theories and models to prove their skepticism with elaborate ‘scientific explanations’. I am not going into details whether greenhouse gas emission induced by human beings causes the globe to warm or not, but certainly we have emitted billions of tons of Carbon in the form of Carbon dioxide into the atmosphere since industrial revolution. Bulk of these emissions is from power plants fueled by Coal, oil and gas. Why power plants emit so much Carbon into the atmosphere and why Governments around the world allow it in the first place? When the emission of Oxide of Nitrogen and Sulfur are restricted by EPA why they did not restrict Oxides of carbon? The reason is very simple. They did not have a technology to generate heat without combustion and they did not have a technology to generate power without heat. It was the dawn of industrial revolution and steam engines were introduced using coal as a fuel. The discovery of steam engines was so great and nobody was disturbed by the black smoke it emitted. They knew very well that the efficiency of a steam engine was low as shown by Carnot cycle, yet steam engine was a new discovery and Governments were willing to condone Carbon emission. Governments were happy with steam engine because it could transport millions of people and goods in bulk across the country and Carbon emission was not at all an issue. Moreover carbon emission did not cause any problem like emission of oxides of Sulfur because it was odorless, colorless and it was emitted above the ground level away from human sight. However the effect of Carbon is insidious. Similarly, power generation technology was developed by converting thermal energy into electrical energy with a maximum efficiency of 33%.This means only 33% of the thermal energy released by combustion of coal is converted into electricity. When the resulting electricity is transmitted across thousands of kilometers by high tension grids, further 5-10% power is lost in the transmission. When the high tension power is stepped down through sub stations to lower voltage such as 100/200/400V further 5% power is lost. The net power received by a consumer is only 28% of the heat value of the fuel in the form of electricity. The balance 67% of heat along with Greenhouse gases from the combustion of coal is simply vented out into the atmosphere. It is the most inefficient method to generate power. Any environmental pollution is the direct result of inefficiency of the technology. Governments and EPAs around the world ignore this fact.Thanks to President Obama who finally introduced the pollution control bill for power plants after 212 years of industrial revolution. Still this bill did not go far enough to control Carbon emission in its current form. Instead of arguing whether globe is warming due to emission of Carbon by human beings or not, Scientists should focus on improving the science and technology of power generation. For example, the electrical efficiency of a Fuel cell is more than 55% compared to conventional power generation at 33% and emits reduced or no carbon. Recent research by MIT shows that such conversion of heat into electricity can be achieved up to 90% compared to current levels of 35%.Had we developed such a technology earlier, probably we will not be discussing about GHG and global warming now. MIT research group is now focusing on developing new Thermophotovoltaics and according to their press release: “Thermal to electric energy conversion with thermophotovoltaics relies on radiation emitted by a hot body, which limits the power per unit area to that of a blackbody. Micro gap thermophotovoltaics take advantage of evanescent waves to obtain higher throughput, with the power per unit area limited by the internal blackbody, which is n2 higher. We propose that even higher power per unit area can be achieved by taking advantage of thermal fluctuations in the near-surface electric fields. For this, we require a converter that couples to dipoles on the hot side, transferring excitation to promote carriers on the cold side which can be used to drive an electrical load. We analyze the simplest implementation of the scheme, in which excitation transfer occurs between matched quantum dots. Next, we examine thermal to electric conversion with a glossy dielectric (aluminum oxide) hot-side surface layer. We show that the throughput power per unit active area can exceed the n2 blackbody limit with this kind of converter. With the use of small quantum dots, the scheme becomes very efficient theoretically, but will require advances in technology to fabricate.” Ref:J.Appl.Phys. 106,094315c(2009); http://dx.doi.org/10.1063/1.3257402 “Quantum-coupled single-electron thermal to electric conversion scheme”. Power generation and distribution using renewable energy sources and using Hydrogen as an alternative fuel is now emerging. Distributed energy systems may replace centralized power plants in the future due to frequent grid failures as we have seen recently in India. Most of the ‘black outs’ are caused by grid failures due to cyclones, tornadoes and other weather related issues, and localized distribution system with combined heat and power offers a better alternative. For those who are skeptical about global warming caused by man-made greenhouse gases the question still remains, “What happened to billions of tons of Caron dioxide emitted into the atmosphere by power plants and transportation since industrial revolution?”.

Saturday, July 28, 2012

Can alternative energy combat global warming?


The world is debating on how to reduce carbon emission and avert the disastrous consequences of global warming. But the emissions from fossil fuels continue unabated while the impact of global warming is being felt all over the world by changing weathers such as flood and draught. It is very clear that the current rate of carbon emission cannot be contained by merely promoting renewable energy at the current rate. Solar, wind, geothermal, ocean wave and OTEC (ocean thermal energy conversion) offer clean alternative energy but currently their total combined percentage of energy generation is only less than 20% of the total power generation. The rate of Carbon reduction by renewable energy do not match the rate of Carbon emission increase by existing and newly built fossil power generation and transportation, to maintain the current level of Carbon in the atmosphere. The crux of the problem is the rate of speed with which we can reduce the Carbon emission in the stipulated time frame. It is unlikely to happen without active participation of industrialized countries such as US, China, India, Japan, EU and Australia by signing a legally binding agreement in reducing their Carbon emissions to an accepted level. However, they can reduce their emissions by increasing the efficiency of their existing power generation and consumption by innovative means. One potential method of carbon reduction is by substituting fossil fuels with biomass in power generation and transportation. By using this method the energy efficiency is increased from current level of 33% to 50-60% in power generation by using gasification technologies and using Hydrogen for transportation. The Fixed carbon in coal is about 70% while the Carbon content in a biomass is only 0.475 X B (B-mass of oven-dry biomass). For example, the moisture content of a dry wood is about 19%,which means the Carbon mass is only 38% in the biomass. To substitute fossil fuels, the world will require massive amounts of biomass. The current consumption of coal worldwide is 6.647 billion tons/yr (Source:charts bin.com)and the world will require at least 13 billion tons/yr of biomass to substitute coal .The total biomass available in the world in the form of forest is 420 billion tons which means about 3% of the forest in the world will be required to substitute current level of coal consumption. This is based on the assumption that all bioenergy is based on gasification of wood mass. But in reality there are several other methods of bioenergy such as biogas, biofuels such as alcohol and bio-diesel from vegetable oils etc, which will complement biogasification to reduce Carbon emission. Another potential method is to capture and recover Carbon from existing fossil fuel power plants. The recovered Carbon dioxide has wider industrial applications such as industrial refrigeration and in chemical process industries such as Urea plant. Absorption of Carbon dioxide from flue gas using solvents such as MEA (mono ethanolamine) is a well established technology. The solvent MEA will absorb Carbon dioxide from the flue gas and the absorbed carbon dioxide will be stripped in a distillation column to separate absorbed carbon dioxide and the solvent. The recovered solvent will be reused. The carbon emission can be reduced by employing various combinations of methods such as anaerobic digestion of organic matters, generation of syngas by gasification of biomass, production of biofuels, along with other forms of renewable energy sources mentioned above. As I have discussed in my previous articles, Hydrogen is the main source of energy in all forms of Carbon based fuels and generating Hydrogen from water using renewable energy source is one of the most potential and expeditious option to reduce Carbon emission.

Wednesday, July 25, 2012

Liquid biomethane- an emerging fuel for rural economy.


Biogas is fast becoming a fuel of the choice for rural economy in many parts of the world because large number of agriculture and farming communities lives in rural area. Most of these countries depend on imported Diesel, LPG and Gasoline for their industries, agriculture, transportation and cooking. Countries like India with large population spends huge amount of foreign currency towards import of petroleum products, making it more vulnerable to the fluctuating oil and gas prices in the international market. However, there is an increasing awareness in India recently about the importance of generating biogas as an alternative energy source to fossil fuel because 70% of the Indian population lives in rural areas. With an estimated cattle population of 280 million (National Dairy development Board 2010) there is a potential to generate biogas at 19,500 Mw. The following calculation is based on the costing details provided by successful case studies of community based Biogas plants in India. One community based biogas plant has 121 families consisting of 5 members per family as stake holders. They supply cow dung at the rate of 4.50 Mt/day for 365days in a year and generate biogas by an anaerobic digester, designed and constructed locally. Biogas is supplied to all the stakeholders every day for 2 hrs in the morning and for about 2 hrs in the evening for cooking. This is equivalent to burning 3025 kgs of wood/day (121 families x 5members/family x 5kg wood per member= 3025 x 4000 kcal/kg= 12.10 mil Kcal/day= 48.40 mmBtu/day).The piped natural gas in India is supplied currently at the rate of $16/mm Btu, which means the plant is able to generate revenue worth $774.40 per day. But each family of 5 members are charged only Rs.150 per month or 121 families are charged 121 x Rs.150= Rs.18, 150/month ($363/month). The family members also supply milk to co-operative dairy farm which has also contributed to set up the biogas plant. Total cost of the project is $43,000 of which Government subsidy is $20,000, Dairy farm contribution $ 16,000 and the stake holders $7000.The economic and social benefit of this project is enormous. The economic benefit by way of fuel savings, revenue from the sale of vermin compose and by way of Carbon credit amounts to Rs.48,94,326 ($97,926/yr).(source:SUMUL). The above case study clearly shows how successfully India can adopt bioenergy as an alternative to fossil fuel in rural areas. We have already seen how biogas can be enriched to increase its methane content and to remove other impurities by way of water scrubbing as shown in the figure. The purified and dried biogas with Methane content 97% and above can be liquefied using cryogenic process by chilling to -162C.The liquefaction of biogas is energy intensive but it is worth doing in countries like India especially when there is no natural gas pipeline network.BLG (liquefied biogas) is an ideal fuel for industries with CHP (combined heat and power) applications with energy efficiency exceeding 80% compared to conventional diesel engine efficiency at 30%.By installing LBG service station and catering to transport industry, India can reduce their import of crude oil while reducing the greenhouse gas emissions. Producing LBG also leads to a renewable fuel available for heavier vehicles. The fuel can be stored as LBG on the vehicle, which increase the driving distance per tank. The requirement is that the vehicle is running frequently, otherwise LBG will vaporize and CH4 will be vented to the atmosphere. LBG is in liquid form only when the gas is stored on the vehicle. When it gets to the engine it is in its gas phase. When LBG is delivered to remote fuel stations or storages it is transported in vacuum insulated pressure vessels. One such manufacture of these semi-trailers is Cryo AB and the dimensions of a standard equipped semi-trailer, suitable for Nordic logistic conditions, is shown in Figure 13. This trailer is optimized for the transportation of LNG/LBG and has a tank capacity of 56,000 liters (~33,000 Nm3 LBG). It is vacuum insulated and the heat in-leakage is less than 0.9 % of maximum payload LBG per 24 hour. The maximum payload is 83.7 % filling rate at 0 bar (g) (=19,730 kg). The source of heat is the surrounding air and the heat in-leakage raises the pressure of the LBG. The maximum working pressure is 7.0 bar (g). If this pressure is exceeded gas is vented to the atmosphere through a safety valve. (Cryo AB, 2008) Fuel station technology: There are three different types of fuel station available, using LBG as a feed stock: - LBG refueling station - LCBG refueling station - Multi-purpose refueling station LBG stations fuel LBG to vehicles equipped with a cryogenic tank while LCBG stations refuel CBG. LCBG stands for liquid to compressed biogas and LBG is transformed to CBG at the refueling station. Multi-purpose refueling stations are able to fuel both LBG and CBG, and consist of one LBG part and one LCBG part. (Vanzetti Engineering, 2008a) There are a number of companies in the LNG business working with the development of fuel stations using LBG as a feedstock. The presented data in this text is based on information from three different companies; Cryostat, Nexgen fuels and Vanzetti Engineering. This article will focus on the multi-purpose station and since the three companies’ designs are very similar, only a general description will be presented. The reason why the multi-purpose station is chosen is because LBG could be a good alternative for heavier vehicles. Here it is assumed that these vehicles already are available and in use on a large extent. The refueling station assumes to be situated in conjunction with one of the frequent roads in India, not in vicinity with the gas network. The following requirements lie as a background for the design: - Possibility to fuel both LBG and CBG - One double dispenser for CBG; one nozzle for vehicles (NGV-1) and one nozzle for busses (NGV-2) - One single nozzle for LBG - Expected volume of sale: 3000 Nm3/day - Pressure on CBG: up to 230 bar (200 bars at 15°C) The standard equipment on the multi-purpose station consists of a storage tank for LBG, cryogenic pumps, ambient vaporizer, odorant injection system and dispensers. (Cryostat, 2008a) There are three types of cryogenic pumps: - Reciprocating - Centrifugal - Submerged Reciprocating pumps are able to function at very high pressures and are therefore used for the filling of buffer tanks and gas cylinders. Centrifugal pumps are able to produce high flow rates and are used for the transfer of cryogenic liquids between reservoir tanks or road tankers. (Cryostat, 2008b) A submerged pump is a centrifugal pump installed inside a vacuum insulated cryogenic tank. This tank is totally submerged in the cryogenic liquid, which makes it stay in permanently cold conditions. (Vanzetti Engineering, 2008b) A sketch over a multi-purpose station can be seen in Figure 14. LBG is stored in a vacuum insulated cryogenic vessel and LBG is delivered with semi-trailers. The volume of the storage tank is usually designed to match refilling on a weekly basis. The transfer from trailer is either done by gravity or by transfer pumps, the latter significantly reducing transfer time. (Vanzetti Engineering, 2008a) From the LBG storage tank the station is divided into two; the LBG part and the LCBG part. The LCBG part consists of a reciprocating pump, an ambient vaporizer and buffer storage. The reciprocating pump sucks LBG from the storage tank and raises the pressure to around 300 bars, before sending it to the ambient high pressure vaporizer. CBG is then odorized before going to the CBG storage and the dispenser. The buffer unit is gas vessel storage, with a maximum working pressure of 300 bar, enabling fast filling of vehicles. (Nexgen Fueling, 2008) The LBG part only consists of a centrifugal pump that transfers LBG from the storage tank, through vacuum insulated lines, to the LBG dispenser that dispense LBG at a pressure of 5-8 bar. (Nexgen Fueling, 2008) Some LBG dispensers are supplied with a system for the recovery of the vehicle boil of gas. (Cryostar, 2008a) To reduce methane losses all venting lines are collected and sent back to the higher parts of the storage tank, to be reliquaries by the cold LBG. (Heisch, 2008) (Ref: Nina Johanssan, Lunds Universitet) Economics of LBG: The LNG trucks averages about 2.8 miles per gallon of LNG, equating to about 4.7 miles per DEG. Table 5 compares the energy content, fuel economy and DEG fuel economy. The greenhouse emission is completely eliminated by using LBG.

Friday, July 20, 2012

Can Bio-gasification transform our world?


Carbon neutral biomass is becoming a potential alternative energy source for fossil fuels in our Carbon constrained economy. More and more waste –to-energy projects is implemented all over the world due to the availability of biomass on a larger scale; thanks to the increasing population and farming activities. New technological developments are taking place side by side to enhance the quality of Biogas for power generation. Distributed power generation using biogas is an ideal method for rural electrification especially, where grid power is unreliable or unavailable. Countries like India which is predominantly an agricultural country, requires steady power for irrigation as well as domestic power and fuel for her villages. Large quantity of biomass in the form of agriculture waste, animal wastes and domestic effluent from sewage treatment plants are readily available for generation of biogas. However, generation of biogas of specified quality is a critical factor in utilizing such large quantities of biomass. In fact, large quantity of biomass can be sensibly utilized for both power generations as well as for the production of value added chemicals, which are otherwise produced from fossil fuels, by simply integrating suitable technologies and methods depending upon the quantity and quality of biomass available at a specific location. Necessary technology is available to integrate biomass gasification plants with existing coal or oil based power plants as well as with chemical plants such as Methanol and Urea. By such integration, one can gradually change from fossil fuel economy to biofuel economy without incurring very large capital investments and infrastructural changes. For example, a coal or oil fired power plant can be easily integrated with a large scale biomass plant so that our dependency on coal or oil can be gradually eliminated. Generation of biogas using anaerobic digestion is a common method. But this method generates biogas with 60% Methane content only, and it has to be enriched to more than 95% Methane content and free from Sulfur compounds, so that it can substitute piped natural gas with high calorific value or LPG (liquefied petroleum gas). Several methods of biogas purification are available but chemical-free methods such as pressurized water absorption or cryogenic separation or hollow fiber membrane separation are preferred choices. The resulting purified biogas can be stored under pressure in tanks and supplied to each house through underground pipelines for heating and cooking. Small business and commercial establishments can generate their own power from this gas using spark-ignited reciprocating gas engines (lean burnt gas engines) or micro turbines or PAFCs (phosphoric acid fuel cells) and use the waste heat to air-condition their premises using absorption chillers. In tropical countries like India, such method of distributed power generation is absolutely necessary to eliminate blackouts and grid failures. By using this method, the rural population need not depend upon the state owned grid supplies but generate their own power and generate their own gas, and need not depend on the supply of rationed LPG cylinders for cooking. If the volume of Bio-methane gas is large enough, then it can also be liquefied into a liquified bio-methane gas (LBG) similar to LNG and LPG. The volume of bio-methane gas will be reduced by 600 times, on liquefaction. It can be distributed in small cryogenic cylinders and tanks just like a diesel fuel. The rural population can use this liquid bio-methane gas as a fuel for transportation like cars, trucks, buses, and farm equipments like tractors and even scooters and auto-rickshaws. Alternatively, large-scale biomass can be converted into syngas by gasification methods so that resulting biomass can be used as a fuel as well as raw materials to manufacture various chemicals. By gasification methods, the biomass can be converted into a syngas (a mixture of Hydrogen and Carbon monoxide) and free from sulfur and other contaminants. Syngas can be directly used for power generation using engines and gas turbines. Hydrogen rich syngas is a more value added product and serves not only as a fuel for power generation, but also for cooking, heating and cooling. A schematic flow diagram Fig 3, Fig4 and Fig 6 (Ref: Mitsubhisi Heavy Industries Review) shows how gasification of biomass to syngas can compete with existing fossil fuels for various applications such as for power generation, as a raw material for various chemical synthesis and as a fuel for cooking, heating and cooling and finally as a liquid fuel for transportation. Bio-gasification has a potential to transform our fossil fuel dependant world into Carbon-free world and to assist us to mitigate the global warming.

Monday, July 16, 2012

Hydrogen from seawater for Fuelcell


We have used Hydrocarbon as the source of fuel for our power generation and transportation since industrial revolution. It has resulted in increasing level of man-made Carbon into the atmosphere; and according to the scientists, the level of carbon has reached an unsustainable level and any further emission into the atmosphere will bring catastrophic consequences by way of climate change. We have already witnessed many natural disasters in a short of span of time. Though there is no direct link established between carbon level in the atmosphere and the global warming, there is certainly enough evidence towards increase in the frequency of natural disasters and increase in the global and ocean temeperatures.We have also seen that Hydrogen is a potential candidate as a source of future energy that can effectively substitute hydrocarbons such as Naphtha or Gasoline. However, hydrogen generation from water using electrolysis is energy intensive and the source of such energy can come only from a renewable source such as solar and wind. Another issue with electrolysis of water for Hydrogen generation is the quality of water used. The quality of water used for electrolysis is high, meeting ASTM Type I Deionized Water preferred, < 0.1 micro Siemen/cm (> 10 megOhm-cm). A unique desalination technology has been developed by an Australian company to generate onsite Hydrogen directly from seawater. In conventional seawater desalination technology using reverse osmosis process only 30-40% of fresh water is recovered as potable water with TDS less than 500 ppm as per WHO standard. The balance highly saline concentrate with TDS above 65,000 ppm is discharged back into the sea which is detrimental to the ocean’s marine life. More and more sweater desalination plants are set up all over the world to mitigate drinking water shortage. This conventional desalination is not only highly inefficient but also causes enormous damage to the marine environment. The technology developed by the above company will be able to recover almost 75% of fresh water from seawater and also able to convert the concentrate into Caustic soda lye with Hydrogen and Chlorine as by-products by electrolysis. The discharge into the sea is drastically reduced to less than 20% with no toxic chemicals. This technology has a potential to revolutionize the salt and caustic soda industries in the future. Caustic soda is a key raw material for a number of chemical industries including PVC.Conventionally, Caustic soda plants all over the world depends on solar salt for their production of Caustic soda.Hydrogne and Chlorine are by-products.Chlrine is used for the production of PVC (poly vinyl chloride) and Hydrogen is used as a fuel. In the newly developed technology, the seawater is not only purified from other contaminants such as Calcium, Magnesium and Sulfate ions present in the seawater but also concentrate the seawater almost to a saturation point so that it can be readily used to generate Hydrogen onsite. The process is very efficient and commercially attractive because it can recover four valuable products namely, drinking water, Caustic soda lye, Chlorine and Hydrogen. The generated Hydrogen can be used directly in a Fuel cell to generate power to run the electrolysis. This process is very ideal for Caustic soda plants that are currently located on seashore. This process can solve drinking water problems around the world because potable water becomes an industrial product. The concentrated seawater can also be converted in a salt by crystallization for food and pharmaceutical applications. There is a growing gap between supply and demand of salt production and most of the chemical industries are depending upon the salt from solar pans. Another potential advantage with this technology is to use wind power to desalinate the water. Both wind power and Hydrogen will form a clean energy mix. It is a win situation for both water industry and the environment as well as for the salt and chemical industries. In conventional salt production, thousands of hectares of land are used to produce few hundred tons of low quality salt with a year long production schedule. There is a mis- match between the demand for salt by large Caustic soda plants and supply from primitive methods of solar production by solar evaporation contaminating cultivable lands. The above case is an example of how clean energy technologies can change water, salt and chemical industries and also generate clean power economically, competing with centralized power plants fuelled with hydrocarbons. Innovative technologies can solve problems of water shortage, greenhouse gases, global warming, and environmental pollution not only economically but also environmental friendly manner. Industries involved in seawater desalination, salt production, chemical industries such as Caustic soda, Soda ash and PVC interested to learn more on this new technology can write directly to this blog address for further information.