Google analytics tag

Showing posts with label Base load power. Show all posts
Showing posts with label Base load power. Show all posts

Saturday, February 15, 2020

Ramana Power Cycle (RPC)

RPC is a newly developed patent (pending) technology from Australia to generate a base load power (24x7) using Renewable Hydrogen and CO2 with Zero emission,
The process discloses a method and system to generate CO2 from seawater along with Hydrogen using any renewable energy source to produce synthetic methane gas known as renewable synthetic methane (RSMG) to generate a base load power. The CO2 can be from various sources apart from sea such as power plants using fossil fuel, steel, cement, coke oven gas, or any syngas generated from various known methods from various sources such as steam methane reformer etc. The process can use any Oxy-combustion CO2 power cycle such as CES, Graz cycle, Allam cycle (using super critical CO2 as a working fluid) or a conventional combined cycle power plant using air combustion to generate a base load power 24 x 7 with ZERO EMISSIONS. The cost of power is estimated to be competitive even in the absence of Carbon pricing or Carbon tax. Needless to mention the unit cost of power can be further reduced by using Carbon pricing or Carbon tax. It is up to individual governments to introduce such a mechanism in order to deploy RPC on a larger scale.
The advantage with the system is it can generate electric power from CO2 with the highest electrical efficiency up to 70% while achieving Zero emissions. It effectively solves the global warming and climate changes problems using existing technologies and infrastructure without a need to develop a new power technology from scratch.
It can be retrofitted with any existing and operating fossil fuel-based power plant OR any large-scale renewable energy plant. It does not require storage batteries or any energy storing devices. The minimum viable capacity starts with 100 Mw and can be scaled up to 500 Mw and beyond and power can be exported to the grid directly through a substation. Optionally the process requires only sun and sea (ocean is the largest reservoir of Carbon, Hydrogen and heat to generate a base load power along with potable water with Zero Carbon emission and achieves circular economy).

Tuesday, September 24, 2019

Carbon Recycling Technology (CRT) is a potential solution for Zero Carbon Emission.

What is CRT?
CRT is a process technology that captures CO2 from existing and operating base load (24 x 7) power plants using fossil fuels and substituting the Oxygen in CO2 with renewable Hydrogen thereby converting CO2 into RNG (renewable natural gas). Then RNG becomes the renewable fuel for the above power plant. It is a perfect example of a circular economy with Zero Carbon emissions.
CRT becomes a link between fossil power industry and renewable industry, and it can achieve zero Carbon emission in the shortest possible time frame averting a catastrophic climate change.
Why CRT?
The climate change is a global issue and it requires a global solution and eliminating CO2 emission by few countries will not address the problem and it will require a collective solution. CRT can provide such a solution.
The world is now divided than ever before into two segments. One segment believes Carbon emission is causing global warming and climate change and therefore CO2 should be curtailed or eliminated completely, and all future energy should come only from renewable energy sources such as solar wind etc to avert climate change.

The other segment believes the science of climate change is not well established and dismisses the theory that CO2 causes global warming and climate change. They believe such a change is a natural phenomenon and it has nothing to do with CO2 emissions.  They fear by simply eliminating fossil fuel usage in the absence of a clear substitute the energy industry will be seriously disrupted causing economic collapse and the security of a nation. For example US has become the largest exporter of oil and gas in the world due to their aggressive policy of exploiting oil and gas reserves using techniques such as fracking. However these resources are finite and their CO2 emissions will become a stumbling block in the near future.
 It is a useless exercise to engage in argument without a clear path forward. But I am sure they will certainly agree and support a substitute fuel such as renewable natural gas (RNG) that can generate a base load power with zero carbon emission.
CRT will be able to convince both the above segment of people because it will meet the requirements of both the parties.
The bottom line is we need a system that can guarantee to generate an uninterrupted power 24 x7 with zero Carbon emission irrespective of a method we use if it is sustainable and environmentally friendly.
How do crew in space shuttle get rid of their CO2 emission from their cabin is shown below by NASA.
Carbon recycling technology is like the above process except CO2 is generated by combustion of natural gas as a by-product of base load power generation which is being removed and recycled in the form of RNG (renewable natural gas) using renewable
Hydrogen. Capture Carbon recycling in space

(Utility scale battery storage)
Methan from CO2SNG plant(Methanation plant for CO2 to SNG)
Renewable energy is a low efficient and intermittent source of energy and it may not meet the world’s energy requirement at the current rate. It will require massive energy storage technologies to be deployed in the shortest possible time frame. According to NREL report a 100 Mw PV solar with 240 Mwh storage battery will cost approx. USD 188 mil. To meet a base load power of 2400 Mwh/day the cost of the system will be USD 1.88 billion. The life of storage battery is assumed only at 12 years and will require replacement at least twice in 24 years of its life cycle. The same capacity 100 Mw combined cycle power plant using natural gas will cost only USD 105 mil with a life of at least 25 years. Therefore, renewable energy alone cannot solve the problem of climate change in its current form. It will be prudent to use renewable energy to generate renewable Hydrogen (RH) from water (even seawater) and use it to decarbonize the fossil economy. In fact, this is the solution  world needs right now.
Large(utility) scale battery will require massive amount of exotic material such as Lithium, Nickel, Cobalt etc which are not renewable and will have a large carbon footprint and disposal of depleted batteries will create massive environmental problems in the future. They are simply not sustainable.
Combined cycle power generation using natural gas is a proven technology that has been used for decades and all the infrastructure required are already in place.
What is involved in CRT?
CRT will involve the following three sections:
  1. Renewable energy facility such as PV solar, Concentrated solar or wind, geothermal, OTEC and hydro etc.
  2. Renewable Hydrogen facility to generate and store Hydrogen using the above renewable energy sources.
  3. Combined cycle base load power plant with CO2 capture and storage using either pre or post combustion technologies.
  4. Conversion of captured CO2 into renewable natural gas RNG which can substitute natural gas in the above base load power plant with zero Carbon emission.
There are number of renewable energy industries established all over the world in the past decade and they are currently operational. The lowest power tariff quoted by renewable energy industry in India is as low as $ 0.035/kwh making it an attractive clean energy source. There are issues in exporting it to the grid due to peak hour supply and demand gap. This renewable energy can be used to generate renewable Hydrogen (RH) by electrolysis of water. Hydrogen can be used as a storage medium to generate power during peak hours using fuel cells. It can also be used to fuel Hydrogen (Fuel cell) cars. Hydrogen cars have many advantages over battery cars based on life cycle assessment. Renewable Hydrogen (RH) is going to help accelerating the decarbonization process of the world soon.
Currently bulk of the power is generated using fossil fuel such as coal, oil and gas. The CO2 emissions can be reduced by 25% by simply switching over from coal to gas. Exiting coal fired power plants can be modified to gas fired plants by replacing their existing boilers. By using RNG the power plant can achieve zero carbon emission while generating base load power.
CRT is a simple and straight forward process technology that can avert global warming and climate change without disrupting existing fossil fuel infrastructure and its power generation while achieving ZERO CARBON EMISSION in the shorted possible time frame. It will promote renewable energy industries in a big way and help decarbonize our economy on a global scale. The cost of renewable energy should further come down so that renewable hydrogen (RH) as well as renewable natural gas (RNG) will become cheaper. Removal of fossil subsidies, taxing carbon emission and subsidizing renewable energy can facilitate such a transition and quicken the process of decarbonization and avert the climate change. A detailed financial model will reveal how quickly and effectively CRT can help countries reduce their emissions.
High CO2 emitting countries such as China, US, India, Australia, Japan, EU and others should adopt this technology .This technology is compatible with transportation technologies such as electric vehicles and Hydrogen (Fuel cell) vehicles because it can generate base load power (24 x 7) with Zero Carbon emission which are essential for the success of the above transport applications. WithoutCRT the transport applications will collapse even if they are "the state of art" technologies.

Monday, August 6, 2012

Base load power generation with Solar thermal

All existing power generation technologies including nuclear power plants uses heat generation as a starting point. The heat is used to generate steam which acts as a motive force to run an alternator to produces electricity. We combust fossil fuels such as coal oil and gas to generate above heat which also emits greenhouse gases such as oxides of Carbon and Nitrogen. As I have disused in my previous article, we did not develop a technology to generate heat without combusting a fossil fuel earlier. This was due to cheap and easy availability of fossil fuel. The potential danger of emitting greenhouse gases into the atmosphere was not realized until recently when scientists pointed out the consequences of carbon build up in the atmosphere. The growth of population and industries around the world pushed the demand for fossil fuels over a period of time which enhanced the Carbon build up in the atmosphere. But now Concentrated Solar Power (CSP) systems have been developed to capture the heat of the sun more efficiently and the potential temperature of solar thermal can reach up to 550C. This dramatic improvement is the efficiency of solar thermal has opened up new avenues of power generation as well as other applications. “CSP is being widely commercialized and the CSP market has seen about 740 MW of generating capacity added between 2007 and the end of 2010. More than half of this (about 478 MW) was installed during 2010, bringing the global total to 1095 MW. Spain added 400 MW in 2010, taking the global lead with a total of 632 MW, while the US ended the year with 509 MW after adding 78 MW, including two fossil–CSP hybrid plants”. (Ref: Wikipedia) “CSP growth is expected to continue at a fast pace. As of April 2011, another 946 MW of capacity was under construction in Spain with total new capacity of 1,789 MW expected to be in operation by the end of 2013. A further 1.5 GW of parabolic-trough and power-tower plants were under construction in the US, and contracts signed for at least another 6.2 GW. Interest is also notable in North Africa and the Middle East, as well as India and China. The global market has been dominated by parabolic-trough plants, which account for 90 percent of CSP plants. As of 9 September 2009, the cost of building a CSP station was typically about US$2.50 to $4 per watt while the fuel (the sun's radiation) is free. Thus a 250 MW CSP station would have cost $600–1000 million to build. That works out to $0.12 to $0.18/kwt. New CSP stations may be economically competitive with fossil fuels. Nathaniel Bullard,” a solar analyst at Bloomberg “New Energy Finance, has calculated that the cost of electricity at the Ivanpah Solar Power Facility, a project under construction in Southern California, will be lower than that from photovoltaic power and about the same as that from natural gas However, in November 2011, Google announced that they would not invest further in CSP projects due to the rapid price decline of photovoltaics. Google spent $168 million on Bright Source IRENA has published on June 2012 a series of studies titled: "Renewable Energy Cost Analysis". The CSP study shows the cost of both building and operation of CSP plants. Costs are expected to decrease, but there are insufficient installations to clearly establish the learning curve. As of March 2012, there was 1.9 GW of CSP installed, with 1.8 GW of that being parabolic trough” Ref: Wikiedia. One Canadian company has demonstrated to generate Hydrogen from water using a catalytic thermolysis using sun’s high temepertaure.The same company has also demonstrated generating base load power using conventional steam turbine by CSP using parabolic troughs. They store sun’s thermal energy using a proprietary thermic fluid and use them during night times to generate continuous power. The company offers to set up CSP plants of various capacities from 15Mw up to 500Mw.

Friday, May 11, 2012

Solar thermal for base load power

The city of Athens hosted its oldest tradition of lighting the Olympic torch for the 2012 London Olympic Games on Thursday in Olympia. The torch was lit by solar power; using parabolic mirror to redirect the sun’s light in order to light the flame with purest natural light. The thermal energy of sun’s light can be powerful when focused to a point and it can reach a temperature more than 600C.The parabolic trough with reflective mirror focuses the sunlight on the tube called ‘collectors’ in which a fluid with high boiling point is circulated. The hot fluid in turn is used to convert water into steam in boiler. The hot oil transfers its heat to the water in a heat exchanger and returns back to the parabolic trough. It is a closed circuit system. The hot oil at 390C generates steam at 370C at 100 bar pressure, which is used to run a HP steam turbine. The standard steam condensing cycle generates power similar to fossil fuel fired power plant. A 50 Mw Trough plant in Israel (Negev Desert) is already in operation. The capacity of such plant can be easily expanded by adding modular parabolic troughs and collectors and the plant can be designed to meet specific power demands. This is a straight forward method to generate base load power using standard steam cycle. The efficiency of such system will be 41% maxium.However recently few companies are trying use a combined cycle. This increases the solar to heat efficiency from 50.5% to 53.6%.This nominal 50Mw power plant generates a total peak power of 57.10Mw using a solar collection area of 310,028m2 with annual solar to electrical efficiency at 16.3% using a water cooled condenser in the steam cycle. The cost of energy works out to $0.23 to $ 0.25 /kwhrs. By using a central solar collection tower (Heliostat) and bottoming with Rankin/kalina cycle ,it is estimated that the total installed cost can be reduced by 10%.The system can be configured from 2Mw up to 100Mw using both trough and tower system. The system can be installed in any remote, arid locations using air condensers, where cooling water is a problem. The estimated annual specific energy cost is less than 6 cents/kwhrs, comparable to low cost fossil energy but with zero pollution and with zero carbon emission. Solar thermal is a potential clean energy of the future for many countries around the world with yearlong sunshine with good intensisty.The solar thermal energy can also be used in many process industries where thermal heating is required. Solar salt pans can use solar thermal energy very efficiently to reduce their production cycle. The concentrated brine can be used as a circulation fluid in solar collectors and also be used to generate power using low heat technologies like Kalina cycle, because concentrated salt brine can store thermal heat. Gemasolar power in Spain is a base load power station supplying power for 25,000 homes 24x7 using molten salt (60% KNO3+40% NaNO3) as a thermal storage medium instead of batteries. Nine plants were built in 1980 in Mojave Desert with a combined capacity of 354 Mws. Other examples of solar base load power plants are Blythe solar with capacity of 968Mw at Riverside County, California and Ivanpah power station with capacity of 370 Mw capacities in US,both under construction. Large scale solar base load plants are no longer a theory but a commercial reality. Direct solar lighting is also being introduced using fiber optics. The sun light is collected at a central point and directed through fiber optics to various rooms inside the building supplying direct sun light. This saves not only electricity but also provides natural light to work places because human body requires certain amount of UV light exposure. Solar energy is here to stay and offer various clean energy solutions in the future.