Google analytics tag

Showing posts with label Fossil fuels. Show all posts
Showing posts with label Fossil fuels. Show all posts

Thursday, April 18, 2013

Water and Energy are two sides of the same coin

Water and energy are two critical issues that will determine the future of humanity on the planet earth. They determine the security of a nation and that is why there is an increasing competition among nations to achieve self-sufficiency in fresh water and clean energy. But these issues are global issues and we need collective global solutions. In a globalised world the carbon emission of one nation or the effluent discharged into the sea from a desalination plant changes the climate of the planet and affects the entire humanity. It is not just a problem of one nation but a problem of the world. The rich and powerful nations should not pollute the earth, air and sea indiscriminately, hoping to achieve self-sufficiency for themselves at the cost of other nations. It is very short sighted policy. Such policies are doomed to fail over a period of time. Next generation will pay the price for such policies. Industrialised countries and oil rich countries should spend their resources on research and development than on weapons and invent new and innovative solutions to address some of the global problems such as energy and water. With increasing population and industrialisation the demand for energy and water is increasing exponentially. But the resources are finite. It is absolutely essential that we conserve them, use them efficiently and recycle them wherever possible so that humanity can survive with dignity and in peace. It is possible only by innovation that follows ‘Nature’s path. The earth’s climate is changing rapidly with unpredictable consequences .Many of us are witnessing for the first time in our lives unusual weather patterns such as draughts, flash flooding, unprecedented snow falls, bush fires, disease and deaths. Although we consider them as natural phenomena there is an increasing intensity and frequency that tells us a different story. They are human induced and we human beings cause these unprecedented events. When scientists point out human beings cause the globe to warm there were scepticism. We never believed we were capable of changing the entire weather system of the globe. We underestimate our actions. By simply discharging effluent from our desalination plants into the sea, can we change the salinity of the ocean or by burning coal can we change the climate of the world? The answer is “Yes” according to science. Small and incremental pollution we cause to our air and water in everyday life have dramatic effects because we disturb the equilibrium of the Nature. In order to restore the equilibrium, Nature is forced to act by changing the climate whether we like it or not. Nature always maintains“equilibrium” that maintains perfect balance and harmony in the world. If any slight changes are made in the equilibrium by human beings then Nature will make sure such changes are countered by a corresponding change that will restore the equilibrium. This is a natural phenomenon. The changes we cause may be small or incremental but the cumulative effect of such changes spanning hundreds of years will affect the equilibrium dramatically. We depend on fossil fuels for our energy needs. These fossils were buried by Nature millions of years ago. But we dig deep into the earth, bring them to surface and use them to generate power, run our cars and heat our homes. Our appetite for fossil fuels increased exponentially as our population grew. We emitted Carbon into the atmosphere from burning fossil fuels for hundreds of years without many consequences. But the emissions have reached a limit that causes a shift in Nature’s equilibrium and Nature will certainly act to counter this shift and the consequences are changes in our weather system that we are currently witnessing. The only way to curtail further Carbon emission into the atmosphere is to capture the current Carbon emissions and convert them into a fuel so that we can recycle them for further power generations without adding fresh fossil fuel into the system while meeting our energy demands. We can convert Carbon emissions into a synthetic natural gas (SNG) by using Hydrogen derived from water. That is why I always believe ‘Water and energy are two sides of the same coin’. But cost of Hydrogen generation from water will be high and that is the price we will have to pay to compensate the changing climate. Sooner we do better will be the outcome for the world. In other word the cost of energy will certainly go up whether we price the Carbon by way of trading or impose Carbon tax or pay incentives for renewable energy or spend several billions of dollars for an innovative technology. There is no short cut. This is the reality of the situation. It will be very difficult for politicians to sell this concept to the public especially during election times but they will have no choice. Similarly serious shortage for fresh water in many parts of the world will force nations to desalinate seawater to meet their growing demand. Saudi Arabia one of the largest producers of desalinated water in the world is still planning for the highest capacity of 600,000m3/day. This plant will discharge almost 600,000 m3/day of effluent back into the sea with more than double the salinity of seawater. Over a period of time the salinity of seawater in the Gulf region has increased to almost 40% higher than it was a decade ago. What it means is their recovery of fresh water by desalination will decrease or their energy requirement will further increase. Any increase in salinity will further increase the fossil fuel consumption (which they have in plenty) will increase the Carbon emission. It is a vicious cycle and the entire world will have to pay the price for such consequences. Small island nations in pacific will bear the brunt of such consequences by inundation of seawater or they will simply disappear into the vast ocean. Recent study by NASA has clearly demonstrated the relationship between the increasing salinity of seawater and the climate change. According to Amber Jenkins Global Climate Change Jet Propulsion Laboratory: “We know that average sea levels have risen over the past century, and that global warming is to blame. But what is climate change doing to the saltiness, or salinity, of our oceans? This is an important question because big shifts in salinity could be a warning that more severe droughts and floods are on their way, or even that global warming is speeding up... Now, new research coming out of the United Kingdom (U.K.) suggests that the amount of salt in seawater is varying in direct response to man-made climate change. Working with colleagues to sift through data collected over the past 50 years, Peter Stott, head of climate monitoring and attribution at the Met Office in Exeter, England, studied whether or not human-induced climate change could be responsible for rises in salinity that have been recorded in the subtropical regions of the Atlantic Ocean, areas at latitudes immediately north and south of Earth’s tropics. By comparing the data to climate models that correct for naturally occurring salinity variations in the ocean, Stott has found that man-made global warming -- over and above any possible natural sources of global warming, such as carbon dioxide given off by volcanoes or increases in the heat output of the sun -- may be responsible for making parts of the North Atlantic Ocean more salty. Salinity levels are important for two reasons. First, along with temperature, they directly affect seawater density (salty water is denser than freshwater) and therefore the circulation of ocean currents from the tropics to the poles. These currents control how heat is carried within the oceans and ultimately regulate the world’s climate. Second, sea surface salinity is intimately linked to Earth’s overall water cycle and to how much freshwater leaves and enters the oceans through evaporation and precipitation. Measuring salinity is one way to probe the water cycle in greater detail.” It is absolutely clear that the way we generate power from fossil fuels and the water we generate from desalination of seawater cannot be continued as business as usual but requires an innovation. New technologies to generate power without emitting Carbon into the atmosphere and generating fresh water from seawater without dumping the highly saline effluent back into the sea will determine the future of our planet. Discharge of concentrated brine into sea will wipe out the entire fish population in the region. The consequences are dire. Oil rich countries should spend on Research and Developments and find innovative ways of desalinating seawater with zero discharge of effluent instead of investing massively on decades old technologies and changing the chemistry of the ocean and the climate forever.

Tuesday, June 19, 2012

Lithium batteries and Electric cars


All forms of renewable energy sources are intermittent by nature and therefore storage becomes essential. Energy is used mainly for power generation and transportation and the growth of these two industries are closely linked with development of energy storage technologies and devices. Electrical energy is conventionally stored using storage batteries. Batteries are electrochemical devices in which electrical energy is stored in the form of chemical energy, which is then converted into electrical energy at the time of usage. Batteries are key components in cars such as Hybrid electric vehicles, Plug-in Hybrid electrical vehicles and Electrical vehicles - all store energy for vehicle propulsion. Hybrid vehicle rely on internal combustion engine as the primary source of energy and use a battery to store excess energy generated during vehicle braking or produced by engine. The stored energy provides power to an electric motor that provides acceleration or provides limited power to the propulsion. Plug-in hybrid incorporates higher capacity battery than Hybrid eclectic vehicles, which are charged externally and used as a primary source of power for longer duration and at higher speed than it is required for Hybrid electric vehicles. In Electric cars, battery is the sole power source. All electric vehicles require rechargeable batteries with capacity to quickly store and discharge electric energy over multiple cycles. There are wide range of batteries and chemistries available in the market. The most common NiMH (Nickel Metal Hydride) used Cathode materials called AB5; A is typically a rare earth material containing lanthanum, cerium, neodymium and praseodymium; while B is a combination of nickel, cobalt, manganese and/or aluminum. Current generation Hybrid vehicles use several Kg of rare earth materials. Lithium ion battery offers better energy density, cold weather performance, abuse tolerance and discharge rates compared to NiMH batteries. With increasing usage of electrical vehicles the demand for lithium ion batteries and Lithium is likely to go up substantially in the coming years. It is estimated that a battery capable of providing 100miles range will contain 3.4 to 12.7 Kgs of Lithium depending upon the lithium-ion chemistry and the battery range. Lithium -ion batteries are also used in renewable energy industries such as solar and wind but Lead-acid batteries are now used widely due to lower cost. The lithium for Cathode and electrolyte is produced from Lithium Carbonate which is now produced using naturally occurring brines by solar evaporation with subsequent chemical precipitation. The naturally occurring brine such as in Atacama in Chile is now the main source of commercial Lithium. The brine is a mixture of various chlorides including Lithium chloride, which is allowed to evaporate by solar heat over a period of 18-20 months. The concentrated lithium chloride is then transferred to a production unit where it is chemically reacted with Sodium carbonate to precipitate Lithium Carbonate. Chile is the largest producers of Lithium carbonate. Though Lithium ion batteries are likely to dominate electric vehicle markets in the future, the supply of Lithium remains limited. Alternative sources of Lithium are natural ores such as Spodumene.Many companies around the world, including couple of companies in Australia are in the process of extracting Lithium from such ores. Manufacturers produce battery cells from anode, cathode and electrolyte materials. All lithium-ion batteries use some form of lithium in the cathode and electrolyte materials, while anodes are generally graphite based and contain no lithium. These cells are connected in series inside a battery housing to form a complete battery pack. Despite lithium’s importance for batteries, it represents a relatively small fraction of the cost of both the battery cell and the final battery cost. “Various programs seek to recover and recycle lithium-ion batteries. These include prominently placed recycling drop-off locations in retail establishments for consumer electronics batteries, as well as recent efforts to promote recycling of EV and PHEV batteries as these vehicles enter the market in larger numbers (Hamilton 2009). Current recycling programs focus more on preventing improper disposal of hazardous battery materials and recovering battery materials that are more valuable than lithium. However, if lithium recovery becomes more cost effective, recycling programs and design features provide a mechanism to enable larger scale lithium recycling. Another potential application for lithium batteries that have reached the end of their useful life for vehicle applications is in stationery applications such as grid storage. The supply chain for many types of batteries involves multiple, geographically distributed steps and it overlaps with the production supply chains of other potential critical materials, such as cobalt, which are also used in battery production. Lithium titanate batteries use a lithium titanium oxide anode and have been mentioned as a potential candidate for automotive use (Gains 2010), despite being limited by a low cell voltage compared to other lithium-ion battery chemistries.” (Ref: Centre for Transportation, Argonne National Laboratory) Usage of power for extraction of Lithium from naturally occurring brines is lower compared to extraction from mineral sources because bulk of the heat for evaporation of brine is supplied by solar heat. However Lithium ion batteries can serve only as a storage medium and the real power has to be generated either by burning fossil fuel or from using renewable energy sources. Governments around the world should make usage of renewable power mandatory for users of Electrical vehicles. Otherwise introduction of Lithium ion battery without such regulation will only enhance carbon emission from fossil fuels.

Saturday, June 2, 2012

Global warming - a race against time


Governments and industries seek comfort from the fact that Global Warming is not directly linked with greenhouse gas emissions and there is no concrete scientific proof yet linking these two, and think they can carry on the business as usual. Few scientists in the scientific communities also have backed such sentiments. Alternative technologies such as renewable energy technologies are expensive and cannot compete with fossil fuel based power plants in near terms. Advanced renewable technologies require rare earth materials such as Lanthanum, cerium, praseodymium, neodymium, cobalt and lithium that are used in electric vehicle batteries; Neodymium, praseodymium and dysprosium that are used in magnets for electric vehicles and wind turbines. Lanthanum, cerium, europium, terbium and yttrium that are used in Phosphors for energy-efficient lighting; Indium, gallium and tellurium that are used in solar cells. The supply of these materials are limited or confined to few countries such as China. These new material also require additional energy to mine, process and extract such rare earth materials using only fossil fuel generated power. Transport vehicles such as Hybrid or Electrical cars require substantial amount of rare earth material such as Lithium for Battery production. The cost of Lithium batteries according to Centre for Transportation, Argonne National Laboratory is: High energy 35 kwh battery costs $706/kwh or $ 24,723. High Power battery 100 10A-h cell costs $2,486. The cost and maintenance of such vehicles are expensive compared to gasoline cars. The looming financial crisis, unemployment and political instability in many parts of the world have overshadowed the problem of greenhouse house and global warming. Governments in power are trying to postpone the issue of global warming as long as possible because they are unpopular among their public, who are increasingly wary of high energy cost and their household budgets. Industrialized countries such as US, China, India and Australia have projected their production and utilization of their coal, oil and gas usage in the future, which are steadily on the rise. Australia’s mining and resources industries are booming with increasing production of Coal, Coal seam Methane gas, LNG, Iron ore, Copper, Nickel and Gold. Increasing demand by growing economies such as India and China have propelled the production of coal and LNG and other minerals in Australia. The booming mining and shipping industries of Australia have prompted UNESCO to warn Australia about the impending danger of ‘Great Barrier reef’ being destroyed by its busy shipping activities. The Great Barrier Reef is the world's largest coral reef ecosystem. The only living organic collective visible from space, it is considered one of the seven natural wonders of the world, and is a World Heritage listed area. It boosts the Queensland’s image of sun, swimming and tropical islands, and around 2 million people visit the reef every year, generating more than $2 billion in direct tourism revenue in the area. The mining boom brings revenue but it also brings natural disasters and destruction of its natural wonders. The net effect will be destruction of Nature and displacement of people at the cost of mining revenue. But how long such a boom will last, and if the economies of China and India starts slowing down then, what happens to all the investments and the damage caused? The above developments paint a grim picture on global warming. The world has witnessed natural disasters causing huge human and financial losses. The natural disasters have costed an economic loss of nearly 13 to 30 billion dollars in the past two years in Australia alone. Yet, people and Governments want a ‘concrete proof’ that man made greenhouse gases cause global warming and trigger natural disasters. Well, we can carry on such conversation indefinitely till we reach a point of no return. “Wisdom comes from experience; but experience comes from foolishness”.

Tuesday, May 15, 2012

Concentrated solar power - a game changer


We acknowledge that solar energy is a potential renewable energy source of the future. The total energy requirement of the world is projected in the next 40 years to be 30 TW (terra watts) and only solar energy has a potential to meet the above demand. However, harnessing sun’s energy to its fullest potential is still a long way to go. Concentrated solar power (CSP) offers a greater hope to fill this gap. The main reason is the cost advantage of CSP compared to PV solar and energy storage technologies and their costs. The cost of PV solar has steadily decreased in the past few years. Though the cost of solar cell has come down to $0.75 per watt, the overall cost of the PV system is still around $ 3.00 per watt. This is due to the cost of encapsulation; interconnect wiring, mounting of panels, inverters and battery bank. The overall cost of the system will not come down drastically beyond a point. This makes PV solar still more expensive compared to conventional power generation using fossil fuels. People can understand the value of renewable energy and impending dangers of global warming due to greenhouse gases, but the ultimate cost of energy will determine the future of energy sources. In PV solar the sun’s light energy is directly converted into Electricity, but storing such energy using batteries have certain limitations. PV solar is suitable for small scale operations but it may not be cost effective for large scale base load power generation. The best option will be to harness the suns thermal energy and store them and use them to generate power using the conventional and established methods such as steam or gas turbines. Once we generate thermal energy of required capacity then we have number of technologies to harness them into useful forms. As we mentioned earlier, the thermal energy can trigger a chemical reaction such as formation of Ammonia by reaction between Hydrogen and Nitrogen under pressure, which will release a large amount of thermal energy by exothermic reaction. Such heat can be used to generate steam to run a stem turbine to generate power. The resulting ammonia can be split with concentrated solar power (CSP) into Hydrogen and Nitrogen and the above process can be repeated. The same system can also be used to split commercial Ammonia into Hydrogen and Nitrogen. The resulting Hydrogen can be separated and stored under pressure. This Hydrogen can be used to fuel Fuel cell cars such as Honda FXC or to generate small scale power for homes and offices. By using CSP, there is potential of cost savings as much as 70% compared to PV solar system for the same capacity power generation on a larger scale. Focusing sun’s energy using large diameter parabolic troughs and concentrators, one can generate high temperatures. Dishes can typically vary in size and configuration from a small diameter of perhaps 1 meter to much larger structures of a dozen or more meters in diameter. Point focus dish concentrators are mounted on tracking systems that track the sun in two axes, directly pointing at the sun, and the receiver is attached to the dish at the focal point so that as the dish moves, the receiver moves with it. These point focus systems can generate high temperatures exceeding 800ºC and even 1,800ºC. The temperature required to run a steam turbine does not exceed 290C and it is quite possible to store thermal energy using mixture of molten salts with high Eutectic points and use them to generate steam. Such large scale energy storage using lead-acid batteries and power generation using PV solar may not be economical. But it will be economical and technically feasible to harness solar thermal energy using CSP for large scale base load power generation. It is estimated that the cost of such CSP will compete with traditional power generation using coal or oil in the near future.CSP has potential to generate cost effective clean power as well as a fuel for transportation.

Friday, March 9, 2012

The solar,wind and water-three keys to Energy independance

Renewable Hydrogen is the key that can provide us energy independence in the twenty first century. Fossil fuel usage will still continue for some more time because the world has already invested massively on fossil fuel infrastructures. The stacks are too high for them to switch over to renewable over night. It is the Mother Nature who provided us coal, oil and gas all these years using her manufacturing process under the earth over millions of years. But we human beings exceeded her tolerance limit by emitting greenhouse emission by our rapid growth in population and industrialisation.We failed to discover an alternate fuel in time and continued with an age old technology with all its inefficiencies. Inefficiencies breed pollution. We were keen to use the heat of combustion by burning a fossil fuel to generate electricity or drive our cars, but paid no attention to the gases released during such combustion. We learnt Thermodynamics and the relationship between heat and work, but failed to understand the consequences of gases of combustion and its impact on our environment. There are two issues involved in burning a fossil fuel to generate electricity. The heat of combustion is an exothermic reaction and we get certain amount of heat. Then we convert this heat energy into electrical energy and the overall efficiency of such conversion is about thirty-five percent. Only thirty-five percent of the heat input energy becomes electrical energy and the remaining sixty-five percent heat along with gases of combustion are released into atmosphere. Of course part of this heat is recovered in a commercial plant, but the bulk of heat is released into the atmosphere as greenhouse gases. We failed to understand the potential of Hydrogen even though we used Hydrocarbon for several decades. We even discovered Urea, the fertilizer that caused ‘green revolution’ in agriculture, using the same Hydrogen present in the Hydrocarbon feedstock. It is time for us to make best utilization of a fossil fuel to its maximum potential when we burn each kilogram of fuel. We should burn coal not just with air but also with steam so that we can generate Hydrogen rich gas that can run a gas turbine in a combined cycle or run our cars on roads. Such a conversion will lead to a substantial increase in energy efficiency as well as in greenhouse gas emission reduction. Governments in industrialized countries should make it a mandatory to convert all their power plants to syngas generation as described above. They should also discourage new plants using fossil fuels with punitive power tariffs and encourage renewable energy projects with higher tariffs. Governments can also impose similar tariffs for transportation depending upon the fuel used such as fossil fuel or Hydrogen. Governments should encourage renewable energy projects such as solar and wind to generate Hydrogen from water as centralized power plants and distribute DC (direct current) by rural electrification. If the country side is electrified using this system then, agriculture, business and industries can thrive in rural areas. Direct current (DC) distribution net work can be installed in rural areas and encourage people to use energy efficient appliances such as Direct current air-conditioners with energy star ratings and tariffs. Governments can bring about these changes by adopting a ‘carrot and stick ‘policy to encourage renewable and discourage fossil fuels. Solar energy is the key from which all other forms of energy emanate such as wind, geothermal and ocean thermal energy conversion system. It is of paramount importance to increase the efficiency of renewable systems and improve energy efficiencies of appliances we use. It is simpler to use LED bulbs using a Direct current generated by Renewable Hydrogen. It is once again the Mother Nature, who can come to the rescue of human beings through solar, wind and water to generate clean energy for the twenty first century. Energy generation and distribution is no longer a business or revenue issue but a moral and ethical issue for Governments. It is only people who can bring about such sweeping changes by electing the right Government who can care for the environment. The future generation will judge us only based on what kind of an environment we leave them behind.

Thursday, March 8, 2012

Hydrogen from Coal

Coal is an important fuel that helped industrial revolution. It is still a predominant fuel for power generation in many parts of the world. It is also an important raw material for number of chemicals and they directly compete with Hydrocarbons such as Naptha.It is abundantly available and it is cheap. We are still able to generate electricity at 5 cents per kwhr using coal. But, now we are entering into a new phase of energy generation and distribution, due to changing environmental and climatic issues of the twenty first century. We require completely a new fuel to address these issues; a fuel that has a higher heat content, which can generate more power per unit value of fuel, and yet, generates no pollution. It is a challenging job and the world is gearing up to meet these challenges. They affect the whole world because any issues concerning energy impacts each and every one of us. Many industrialized countries around the world are reluctant to sign an agreement that compels them to reduce their greenhouse emission to an acceptable level set by UN panel of scientists. Governments such as US, China and India are reluctant to sign such an agreement because their economy and growth depends upon cheap energy, made from coal. Such an agreement will be detrimental to their progress, and the leaders of these nations are not prepared to sign such an agreement. They also understand that world cannot afford to continue to use coal as they have used in the past. It is simply unsustainable. It is a precarious situation and they need to carefully plan their path forward. On one hand, they need to maintain their industrial and economical growth, and on the other hand they need to reduce their emissions and save the world, from catastrophic consequences of global warming. A simple analysis of the fuel will indicate that Hydrogen is a potential energy source for the future. It has energy content at least five times more than a coal for a unit value. Coal has an average heat content of 5000 kcal /kg while Hydrogen has an average heat content of 39,000 kcal/kg. Coal has a number of impurities such as ash, sulfur, phosphorous, other than carbon. Burning coal will emit greenhouse gases with toxic fumes that have to be removed. Therefore, these industrialized countries are now looking ways to generate Hydrogen from coal; that too at a cost which will be comparable to other current fuels such as natural gas. It is not an easy task because natural gas is formed by Mother Nature over several hundred thousand years. It is readily available and there is no manufacturing cost except processing cost. We are used to free energy from Mother Nature. This is the crux of the issue. Hydrogen is the most abundantly available element on earth; yet it is not available in a free form. It is available as a compound, for example, joined with oxygen forming water H2O molecule; or joined with Carbon forming Methane CH4 molecule.This Hydrogen should be separated in a free form, and this separation requires energy. How can coal, which is just a Carbon, generate Hydrogen? It requires an addition of water in the form of steam. When coal is gasified with air and steam, a mixture of Hydrogen and Carbon dioxide is generated, known as Syngas (synthesis gas). 2C + H2O+O2 ------- 2H2 +2 CO2 The syngas is separated into Hydrogen and carbon dioxide using various methods using their difference in densities. The Hydrogen can be stored under pressure for further use. Research work is currently under way to capture carbon dioxide for sequestering. Carbon sequestration is a method of capturing carbon dioxide and storing it in a place where it cannot enter the atmosphere. But the technical feasibility and economic viability of such a system is yet to be established. Carbon sequestration is a new concept and the cost of sequestration can potentially increase the cost of energy derived from Hydrogen despite the fact, Hydrogen has energy content five times more the carbon. However, there is no quick fix for our energy problems, and we have to reconcile to the fact that the energy cost will increase in the future but eventually reduce the greenhouse emissions. These developed countries should at least disclose to the rest of the world, how they plan to reduce their emissions and their action plans; such disclosure should be subject to inspection by UN panel. In the absence of any concrete mechanism, it will be impossible to stop the global warming in the stipulated time frame considering the fact that a number of coal/oil/gas fired power plants are already under implementation.

Wednesday, March 7, 2012

All roads lead to Hydrogen

We have discussed about the formation of fossil fuel as part of carbon cycle. It takes several million years before the carbon from the plants and animals turn into fossil fuels due to chemical reactions under higher pressure and temperature. The fossil fuels include solid coal, liquid oil and gaseous Hydrocarbons such as crude oil and natural gas. The natural gas forms the top layer due to its lightness. Natural gas is also the result of anaerobic reaction by microorganism in the absence of air converting organic matter under the earth into a gas. The gas during exploration comes with great pressure to be transported across several kilometers. We are actually duplicating this process to generate Biogas from our food and agriculture wastes and other organic matters. The end product is a mixture of methane and carbon dioxide. During oil and gas exploration we get methane and carbon dioxide and other gases such as Hydrogen sulfide depending upon the location of the oil field. That is why Sulfur and other products such as Mercaptnans are present in crude oil and natural gas. When these fossil fuels are burnt the gaseous combustion products contain sulfur dioxide and oxide of nitrogen along with oxides of carbon. Air is normally used for combustion which is a mixture of Nitrogen and oxygen in the ration of 71:21,therefore, the combustion products invariably consist of oxides of nitrogen. We are so addicted to oil and we are even trying to convert natural gas into oil, similar to gasoline using GTL (gas to oil) process. However all these combustion processes can be reacted with steam to form synthesis gas, a precursor for liquid Hydrocarbon. It is quite obvious that water in the form of steam is a key component in future energy mixes because that is how one can introduce a Hydrogen molecule in the reaction process. Hydrogen in the form of water is the key. Even if we can successfully steam reform natural gas to get Hydrogen we still have problems deal thing with traces of sulfur and mercaptans, potential poison for catalyst in PEM (Proton exchange membrane) Fuelcells.The idea is to generate Hydrogen using a carbonaceous source such as fossil fuel for simple reasons. It is abundantly available but it emits greenhouse gases; but when you introduce Hydrogen into the mix then there is a good possibility of reducing greenhouse emission, even though we still use fossil fuels. Secondly, we are cautious to handle pure Hydrogen due to its explosive nature and the best available option is to mix Hydrogen with combustion products of fossil fuels. The result is the formation of Syngas. Syngas is an important intermediary that will lead us to the Hydrogen economy of the futue.The syngas can be generated by various methods as long as we have an organic source and water (steam) source. In fact all food and agriculture waste can be converted into syngas either using a biological process or by gasification process. Both will lead to formation of Methane or syngas. Syngas is a mixture of hydrogen with carbon dioxide formed in the following sequences, starting with carbon ,air and steam. 2C + O2-------- 2 CO, 2CO + 2H2O---------2H2 +2 CO2 The carbon source can be any organic source such as coal, coke, wood etc.As you can see in the reaction, the quantity of carbon source is equally important to generate Hydrogen. One can say that Syngas is a match maker between fossil economy of the past and Hydrogen economy of the future. It is a very important chemical reaction that will change the future energy scene in the world. That is why many counties like US and Australia and in Europe who have considerable coal deposits are now trying to generate Hydrogen from coal. Once coal is converted into a gas such as syngas then they are one step closer to separate Hydrogen from syngas.Number of companies and Research organizations around the world are trying to develop an efficient and economical method of generating Hydrogen from coal. They have to find suitable conditions to generate higher yield of Hydrogen from syngas and then find an efficient system to separate Hydrogen from carbon dioxide. As I have mentioned earlier, the purity of Hydrogen is important especially when we use coal as the basic material because it contains number of impurities to be removed before converting into a syngas. As we can see, all energy roads are now leading to Hydrogen as the ultimate clean fuel of the future. When the demand for Hydrogen increase, the demand for water too will increase because it is the direct source of Hydrogen. Energy and water are two side of the same coin as I have mentioned earlier in the past.

Tuesday, March 6, 2012

Hydrogen assisted combustion

We have been using fossil fuels like diesel, petrol and natural gas for power generation and transportation from the time of industrial revolution. The basic fuel and the combustion technology are practically the same with efficiencies less than 40%. In fact we have become very complacent with both the fuel and the combustion technology and there were no major research and development on both the above issues. In fact we became completely dependent on these two issues and there was no substantial breakthrough either in substituting the fossil fuel or in the combustion technology. The basic reason behind this situation can be attributed to the discovery of electromagnestism, which opened the way for electricity generation as well as transportation. In both these industries, the key component is the motor which provided a rotary motion. This rotary motion generates electricity in turbines and such motion is created by combustion of a fuel, which is invariably a fossil fuel. We have been carrying on this for few decades before the emission of greenhouse started rising abnormally and became an issue. We are now at cross roads wondering what the future holds for the world. Is it possible to carry on the business as usual or look for an alternative source of energy? We started looking at various sources of energy as an alternative. Any alternative energy source should meet two critical parameters namely the lower or no carbon emission and sustainability. Low carbon can be achieved by few methods. The immediate option is to maximize the energy efficiency of existing systems so that for the given input of fuel the output is much higher than what we have achieved all these years. But this increase in efficiency should be substantial in order to achieve the emission levels of greenhouse suggested by the UN panel on climate change. The second option will be to switch over to different fuels with less carbon emission e.g., coal fired power plants switching over to gas fired power plants using combined cycle. Retrofitting organic Rankin cycle as a bottoming for steam turbines to squeeze out some extra energy. Decentralizing the power plants in a phased manner in favor of distributed energy systems where gas, instead of electricity, can be supplied to individual industries, to generate their own power using CHP process. All these measures can help reduce the emission level but our dependency on fossil fuel will still continue. W can look at a completely different fuel source and new technology for power generation and transportation. If we examine carefully there are not many alternative fuel sources except Hydrogen that could meet these parameters. We are also trying to develop bio fuels. But biofuels are also organic chemicals with carbon backbone which will generate greenhouse emission. Moreover bio fuel sources such as palm oil, corn are also food sources. There is an indiscriminate deforestation and plantation of palm trees in tropical countries like Malaysis, Indonesia and PNG. The focus is now shifting to carbon based organic compounds like biofuel and biogas. This will create a situation where food crops will be substituted with energy crops creating food shortage.But the carbon dioxide level in the atmosphere may not be reduced drastically by these methods. We need to develop an energy source which does not emit any carbon emission and at the same time we should be able to use existing technology to the possible extent. Only Hydrogen can meet these requirements. In the current situation it is impossible to substitute fossil fuels in a short span of time. We can reduce fossil fuels by blending with Hydrogen to the maximum extent possible so that we can achieve two objectives. We can reduce the carbon emission and at the same we can deploy Hydrogen as a blended fuel with fossil fuel rather than pure Hydrogen. Since Hydrogen is a very light gas and readily form an explosive mixture with oxygen, this opens up a new opportunity to develop Hydrogen assisted combustion process in power generation as well as in transportation. It will be easier to handle a mixture of natural gas and Hydrogen for combustion in Gas turbine, or spark ignited reciprocating engines, as well as, gasoline combustion engines in cars. This will also gives us an opportunity to develop advanced and competitive systems like Fuel cell as an alternative technology for combustion process in due course of time. The hydrogen assisted combustion technology is much easier, faster and economical and at the same time reduce the greenhouse emission to an accepted level. But the source of such Hydrogen cannot be natural gas but only renewable sources. The renewable technologies such as solar, wind, geothermal, OTEC (ocean thermal energy conversion) should generate renewable Hydrogen. This is the key for sustainability as well as for greenhouse gas mitigation. These two benefits are too attractive to ignore and it is time we move from total fossil fuel to Hydrogen blended fossil fuel. The blended fuel along with the energy efficiency measures suggested above should go hand in hand, so that we may get over this turbulent period of financial crisis and global warming. It is also possible that Hydrogen assisted combustion be adopted for coal fired power plants by simply firing coal slurry, finely powdered coal blended with water and conveyed pneumatically for firing boilers and also for gasification process to generate syngas for IGCC (Integrated gasification and combined cycle) applications. Syngas production will be critical in the near future for a smoother transition from fossil economy to Hydrogen economy irrespective of the route we adopt.

Saturday, February 25, 2012

Global warming- a Mayan prophesy?

Globe is warming at an unprecedented rate since industrial revolution due to the effect of greenhouse gases in the atmosphere; according to a panel of scientists in IPCC (Intergovernmental Panel on Climate Change).Thousands of scientists from 30 countries formed IPCC under United Nation to study the problem of global warming and reported to the world. IPCC published a detailed report and it gave an apocalyptic scenario about global warming. They warned that the carbon dioxide level in the atmospheres has increased from 316ppm in 1959 (13% higher than preindustrial level) to current level of 380ppm in 2005, which is 35% above preindustrial level. This dramatic increase in the level of CO2 is due to the human activities. The major contributing gases are Carbon dioxide, Methane, Oxides of Nitrogen, CFC (Chlorofluorocarbons) and Ozone present in the atmosphere. Bulk of the emissions is from power plants and automobiles using fossil fuels. Other process industries like cement plants are also major contributors of greenhouse gases. The enhanced effect of global warming is due to the absorption of invisible infrared radiation coming from the warm surface of the earth. On an average, sun’s light reaches the earth at the rate of 343W/m2 and about 30% of this value is reflected and about 70% is absorbed. The amount of invisible infrared radiation absorbed depends on the concentration of greenhouse gases present in the atmosphere. According to IPCC their findings on global warming are unequivocal, and if the world does not act now, then, we will be facing dire consequences in the near future. Doubling CO2 emission will increase the global temperature from 2-4.5C. But many skeptics say the IPCC report is apocryphal and they have their own theories to support their skepticism. Many climate models proposed by various international institutions projects an average temperature rise of 3.4C above year 2000 level if we do nothing and carry on the “business as usual”. The consequences of global warming are far reaching. An increase of 3C rise in temperature will result in sea level rise up to 4 to 6 mts in the next few thousand years. About 10% of the world population lives in less than 10 mts above sea level and majority of population lives within 10km of sea level. We have already witnessed few islands in pacific (example, Bougainvillea, Sulawesi) inundated with seawater. Maldives and Bangladesh are good examples. They predict shortage of fresh water in many parts of the world and severe draught and flooding in other parts of the world. We have already witnessed these incidents in Northern Queensland in Australia and in Europe, and prolonged draught in Texas, bushfires in Australia and in Russia. Majority of Indian subcontinent is suffering from lack of drinking water. Unscrupulous exploitation of ground water for agriculture purpose has made the situation worse. Many plants, animals and species will face greater risk of extinction. An increasing acidity in seawater due to excess absorption of carbon dioxide will affect aquatic organisms such as shell, coral and shellfish. We are already witnessing bleaching of corals at Great Barrier Reef in Australia. Global warming will displace millions of people due to draught and flooding and consequently leave millions of children malnourished. Water born diseases and infectious diseases will affect many people. Tropical diseases such as dengue and malaria will be widespread. These consequences are real, if the world does not act on greenhouse emissions. One need not be a rocket scientist to understand that human behavior and activity has caused irreversible damage to the plant earth for several decades. We unearthed fossil fuels and converted them into plastics and dumped them in every water ways, parks and beaches. The exponential growth in population and industries has driven many animals, tropical forests into extinction. Each and every one of us who are 50 years and above would have witnessed the unfolding consequences of environmental degradation in our life time. What kind of plant earth we will be leaving behind for our future generations? Every religion on earth has predicted the future of humanity and the final days and hours with deadly consequences for their actions. All native people whether they are Indians from Americas, Aborigines of Australia or Shamans of Indonesia or Natives of Alaska, have time and again raised their voice against indiscriminate destruction of land, water and air in the name of science and industrial growth. But no Government listened to their voice and we are here still struggling with unemployment and poverty. Mayan civilization is a well known civilization in ancient world and their seven prophesies are matters of great debate in the recent past. Their prophecy is ominously similar to what IPCC panel predicts except the “end of the world in Dec 2012”. I quote third, fourth and fifth prophesy out of seven Mayan prophecies here, which are relevant to global warming: “The third prophecy states that there will be change in temperature, producing climatic, geological and social changes in magnitude without patterns and at astonishing speed. One of them will be generated by man in his lack of conscience to care for and protect natural resources of the planet and other generated by sun, which will increase its activity due to increasing vibrations.” “The fourth prophecy says that anti-ecological conduct of man and greater activity by sun will cause melting of ice in the poles. It will allow the earth to clean itself and green itself again, producing changes in the physical composition of the continents of the planet. The Mayans left a register in the Desdre codices that for every 117 spins of Venus, the Sun suffers new alterations and huge spots or solar eruption appears”. “The fifth prophecy says that all systems based on fear, on which the civilization based on, will suffer simultaneously with the planet and man will make a transformation to give way to new harmonic reality. The system will fail and man will face himself and in this need to recognize society and continue down the path of evolution that will bring him to understand creation. Only one common spiritual world for all humanity that will end all limits established among many ways to look at God will emerge”. Perhaps, Jesus too expressed his displeasure with human behavior according to the Gospel of Thomas: Jesus said, "Perhaps people think that I have come to cast peace upon the world. They do not know that I have come to cast conflicts upon the earth: fire, sword, war. For there will be five in a house: there'll be three against two and two against three, father against son and son against father, and they will stand alone."

Sunday, February 12, 2012

Distributed Energy System (DES)

Distributed energy system, is a system that generates power, at the point of usage; unlike the centralized power generation, where power is generated at a remote place, and then distributed to various locations, using power transmission grids. The centralized systems became popular, due to its convenience, to transmit large power, over long distances, under high voltage. However, there are number of disadvantages, in centralized power generation and distribution. Most of these power generation plants are using fossil fuels, like coal, oil and gas, whose efficiency is only about 40%; which means, only about 40% of the heat value, of the fuel used, is converted, into electricity, and the balance is a waste heat, discharged, in the form of greenhouse gases, into the atmosphere. That is why; power plants are the largest emitters of greenhouse gases, in the world. These plants are not only the biggest emitters of greenhouse gases, but also a very inefficient, because, bulk of the fuel, is simply combusted and discharged into the atmosphere. With ever increasing cost of oil and gas, these power plants are ‘white elephants’ that drain the oil and gas resources, in the world, and turn them into greenhouse gases. Such inefficiencies, drive the cost of power high, and also increase the pollution levels. This unabated emission of greenhouse gas has to be curtailed. At this juncture of global warming, and increasing energy cost, Governments and companies, should encourage distributed energy systems. The advantage with distributed energy systems is, when energy is generated onsite, using a fuel, the waste heat can be utilized in a productive way, thus, increasing the power efficiencies from 40% up to 80-85%.This increase in efficiency, will result, is the reduction in the cost of energy. The power savings from distributed energy system varies, from 10% up to 80%.Industries and businesses, who use continuous processes (24x7) and whose energy bill is substantial, are the ideal candidates, for distributed energy systems. It is easier, to adopt distributed energy system, with gaseous fuels, like natural gas and Hydrogen, than with liquid fuels such as diesel or solid fuel such as coal. Distributed energy system can even be installed, using ‘Biogas’, where large quantity of organic waste, or waste water is available, throughout the year, like dairy plants, breweries, municipal sewage systems etc.The power generated in DES system, is invariably, a direct current (DC), which is usually converted into AC (alternate current) using rectifiers, before usage. But, part of this DC load, can be used directly in the form of Dc current, wherever necessary. For example, many consumers are using LED (Light emitting diode) bulbs, for lighting, in order to save energy. In distributed energy system, it is possible to use direct current for these applications because, you can save certain amount of energy in converting DC to AC, and then again AC to DC.In fact, many DC operated appliances can be directly connected to DC power. In addition to the above advantages, the waste heat generated during power generation, can be utilized to generate steam, hot water, chilled water or space airconditioning.For example, if a distributed energy system generates, 500 kw electric power, using natural gas, with an efficiency of 30%, the gas consumption will be about 1666 Kws.The remaining waste heat available is about 1166 Kws, which is equivalent to about 300 TR chilling capacity. This chiller can be used to aircondion an office space. The total efficiency of such system can be as much as 80%.The cost of energy is reduced as much as 60% or more, in some cases. Distributed energy system, is the best and cost effective system, to reduce energy bills as well as to reduce greenhouse emissions, because, in the absence of DES system, the power for air-conditioning has to come from the grid. It is a win situation, for everybody involved. Such system can also be used, with Hydrogen gas. In fact, the heat value of Hydrogen is much higher than any other fuel, such as coal, oil or gas. Hydrogen is the energy of the future that is not only clean but also sustainable.

Friday, February 10, 2012

Power your home with sun and water

Is it really possible, to power your home, with just sun and water? It sounds very simple and a perfect solution, for our energy hungry world. It is true, and it is possible, to generate your own electricity, for all your home needs, without depending upon the grid power. Even when, there is no sun for a week! Let us see how, this is possible. Photovoltaic (PV) solar, is getting popular, and many Governments in developed countries, subsidies the cost of solar panels, and also buy surplus power, at a higher tariff, than the grid power tariff.Goverments are doing this, to encourage more and more people, to opt for solar energy, a cleaner form of energy. Currently, solar panels are set up on roof tops, and the solar energy is used to power your appliances, and the surplus power, exported to the grid. At times of shortage, the power from the grid is drawn, to meet your home requirements. When you import power from the grid, the energy meter revolves in clock wise direction. When you export power to the grid, the energy meter, runs in anti-clockwise direction, indicating the export of surplus power to the grid. At the end of the month, you calculate the net power exported or imported, and accordingly collect the revenue from the Government based on fixed tariff, or pay to the Government based on their bill. But there is a catch! Power distribution companies distribute power, to consumers, at variable tariff, such as peak power and off peak power. The tariffs are high, during peak periods, and lower at off-peak periods. Solar system generates more power when the sun is bright, and generates less power during cloudy times. One should be able to generate solar power when the sun is bright, use it during the peak period. But grid tariff is at peak normally during the daytime, between 9 and 5. And lower at night time, between 6pm to 6am. Therefore, one should be able to generate power during bright sun shine, and use it during peak period. That means you should be able to generate your required power during the daytime, and use them in the night, because you don’t use much power, during daytime. How to overcome this anomalous situation, and still to meet your hundred percent power requirement at home? We can offer you a system that will generate power, while the sun shines. This power will generate Hydrogen gas, from pure water, and store it under pressure. Stored Hydrogen is your stored energy. It is like your overhead water tank. You can pump water and store it in the overhead tank, and use it, whenever you need it. But, your solar generated electricity cannot be stored in this way. You can store it, in a battery bank. But, these lead acid batteries are heavy, it requires regular maintenance, you cannot draw stored power from the battery more than 80% of its stored capacity, and finally, batteries have certain life span, usually 3-5 years, when it has to be substituted, with new batteries. If you calculate, the economics of solar system for its whole life cycle of say 10-15 years, including all battery replacements and maintenance cost, the initial investment will be high. In spite of all these expenses, one cannot guarantee with uninterrupted supply of power, to your home. But, you can store Hydrogen gas, any quantity, without any loss. You can generate your own electricity, using this stored Hydrogen, as and when, you require. You can still export your surplus power to the grid, and also meet all your power needs, even during peak periods! The overall cost of the system is higher, than solar grid connects system but it will offer you, an uninterrupted power, throughout the year. You will be eligible for carbon credit, and your system will earn you money, as you relax at home, with no worries about mounting power bills! The cost of energy keeps rising, as the oil prices go up. You may even be able to generate and store more Hydrogen, to fuel you car, like Honda FCX.Hydrogen solution is the solution of the future. We can design, engineer and install a system to meet your specific needs. Of course, we need to study your specific requirement, and suitability of your location.

Water and Energy

Water and Energy, are two sides of the same coin. It is known, from the famous equation E=mc2, of Albert Einstein, that, a tiny amount of mass is a vast storehouse of energy. But, even the molecular Hydrogen, as a result of water decomposition, is a promising energy source, of the future.However, the amount of energy used, to split water, into Hydrogen and Oxygen, is higher, compared to the amount of energy, that can be generated, from the resulting Hydrogen, using Fuel cell. But, this problem can be mitigated, by using renewable source of energy, such as PV solar, Solar (thermal), wind energy, geothermal energy, ocean thermal energy conversion (OTEC) etc.The cost of renewable energy, is still considered expensive, for two reasons. We are used to cheap energy, from fossil fuels, for decades, and most of the investments, made on fossil fuel infrastructures, have been already realized. 2. A complete switch over, to renewable energy technologies, will require massive new investment.Unlike, investments made on fossil fuel infrastructures, over several decades, the investment required, for renewable energy infrastructure, is not only massive, but needs to be deployed, in a shorter span of time, simultaneously all over the world. There is no basic infrastructure in renewable energy industry, in existence, to make this change. Meanwhile, the unabated emission of carbon dioxide, by fossil fuels, is certainly, causing global warming. There are many skeptics, on the science on global warming. Such skepticism does not stem from the fact, that they have a concrete proof, but, ‘such skepticism’ serves, their vested interest. Politicians, who are in power, do not want any increase in the cost of energy, which is unpopular among people, may, eventually, throw them out of power. They say, they want to serve people, with low cost energy, but, neither politicians nor the common man understands the consequences of such measures. It will be our future generations, who will face the brunt of this skepticism, by facing fuel shortage or unaffordable cost of fuel, erratic climate change, and frequent natural catastrophies.It is time, for the world, to act decisively and swiftly, and move towards renewable energy, by massive investment, and creation of new skills and jobs, on a very large scale. The companies who have massively invested in fossil power plants, and the governments who depend on the support of such companies, and who want to keep the energy cost low, because of its popularity, are the major skeptics of global warming. The hidden cost of environmental challenges, and its consequences, is much higher, than the savings, due to cheap fossil fuels. It requires a paradigm shift and a sense of social justice, in the minds of Governments and companies. It is not all that difficult, to switch over to cleaner technologies. In fact, most of the technologies are already available, and it requires only a ‘will, bold decision and leadership’ by Governments. Any clean energy solution, should be sustainable in the long run. Hydrogen can meet not only the sustainability, but even the transition, from fossil fuel to Hydrogen; will be smooth. ‘Clean Energy and Water Technologies’, is working, both on water and energy technologies, to make Hydrogen future, a reality. To start with, all existing fossil fuel infrastructures can be modified towards Hydrogen generation, and fuel cell based power generation infrastructures. Of course, this will require large investment, but compared to a complete shift to renewable energy, it will require only, a relatively smaller investment. For example, all fuel stations can be converted into Hydrogen stations, by simply installing steam reformers, including LNG based fuel stations. All gasoline based automobiles, can be either fitted with Hydrogen IC engines, or converted to fuel cells, similar to Honda FXL models. If the Governments, all over the world, can agree for such conversion, and a complete shift to Hydrogen economy, then, it can become a reality, in the next decade. We have to focus on ‘Renewable Hydrogen’, which can come from seawater, using renewable energy source, and ‘Bio-hydrogen’ using biotechnology from waste organic matter. The future generation will not only have a cleaner and affordable fuel, but a more sustainable future!