Google analytics tag

Wednesday, April 30, 2014

“Petrol from seawater “, a Carbon neutral fuel to mitigate climate change !


Recent news from USA has got the attention of many people around the world. “Scientists with the United States Navy say they have successfully developed a way to convert seawater into jet fuel, calling it a potentially revolutionary advancement. Researchers at the Naval Research Laboratory (NRL) developed technology to extract carbon dioxide from seawater while simultaneously producing hydrogen, and then converted the gasses into hydrocarbon liquid fuel. The system could potentially shave hours off the at-sea refueling process and eliminate time spent away from missions.” They estimate the cost of the jet fuel will be anywhere between $3 and $6 per gallon. It may not be able to compete with traditional petroleum sources due to high energy requirement. However, the main attraction of this process is to extract Carbon dioxide absorbed by the ocean to avoid acidification and to mitigate climate change while making petrol as a Carbon neutral fuel. Ocean has become a rich source of Carbon (Carbon sink) absorbing excess atmospheric Carbon dioxide caused by human beings. Generating Carbon neutral fuel such as SNG (synthetic natural gas), diesel and petrol from air and sea water will be the fastest way to reduce Carbon from the atmosphere. Probably Governments, business and industries will embarrass this concept much quicker than any other mitigating methods simply because it is a revenue generating proposition with a potential to earn carbon credit. Carbon-neutral fuel is a synthetic fuel (including methane, gasoline, diesel fuel, jet fuel or ammonia) that is produced using carbon dioxide recycled from power plant flue exhaust gas or derived from carbonic acid in seawater and renewable Hydrogen. Such fuels are potentially carbon-neutral because they do not result in a net increase in atmospheric greenhouse gases. It is a Carbon capture and recycling (CCR) process. “To the extent that carbon-neutral fuels displace fossil fuels, or if they are produced from waste carbon or seawater carbonic acid, and their combustion is subject to carbon capture at the flue or exhaust pipe, they result in negative carbon dioxide emission and net carbon dioxide removal from the atmosphere, and thus constitute a form of greenhouse gas remediation. Such power to gas carbon-neutral and carbon-negative fuels can be produced by the electrolysis of water to make hydrogen used in the Sabatier reaction to produce methane which may then be stored to be burned later in power plants as synthetic natural gas, transported by pipeline, truck, or tanker ship, or be used in gas to liquids processes such as the Fischer–Tropsch (FT) process to make traditional fuels for transportation or heating. Carbon-neutral fuels are used in Germany and Iceland for distributed storage of renewable energy, minimizing problems of wind and solar intermittency, and enabling transmission of wind, water, and solar power through existing natural gas pipelines. Such renewable fuels could alleviate the costs and dependency issues of imported fossil fuels without requiring either electrification of the vehicle fleet or conversion to hydrogen or other fuels, enabling continued compatible and affordable vehicles. A 250 kilowatt synthetic methane plant has been built in Germany and it is being scaled up to 10 megawatts.” (Wikipedia). We have been writing about renewable hydrogen (RH) for the past couple of years and often use the phrase, “Water and energy are two sides of the same coin” because we can mitigate climate change using renewable hydrogen (RH) even while the fossil fuel economy can carry on as usual. By generating Carbon neutral fuels using excess Carbon from air and sea and hydrogen from water (even seawater) using renewable energy sources, the problem of global warming and climate change can be solved because we will not be adding any further Carbon into the atmosphere than what it is today! Instead of generating solar and wind power and storing them in batteries it will be prudent to generate Carbon neutral fuel from CO2 already available in the system and use them as usual. Meanwhile Hydrogen based power generation and transportation can be developed as a long term solution. Fossil- fuel fired power plants produce CO2 (Carbon dioxide) which could be captured and converted to CO (Carbon monoxide) for production of synthetic fuels. CO2 can be converted to CO by the Reverse Water Gas Shift Reaction, CO2 + H2--> CO + H2O. CO could then be used in the F-T reaction with additional hydrogen from water-splitting to produce synthetic fuel such as diesel and petrol as carbon neutral fuels. Synthetic fuel by CO2 Capture + H2 from Water-splitting: Reverse Water Gas Shift CO2 + H2 ----> CO + H2O F-T reaction CO + 2H2 ----> CH2 + H2O Water-splitting 3H2O + Energy --> 3H2 + 3/2O2 Net reaction CO2 + H2O + Energy ---> CH2 + 3/2O2 In this case, no coal is needed at all, and CO2 is consumed rather than produced. The excess O2 (oxygen) would be used in the fossil power plant that provides the CO2, simplifying CO2 capture. There is currently considerable effort underway on developing CO2 capture systems for new and extant power plants. The increasing concern with Global Climate Change suggests that there is a reasonable likelihood of such plants operating in the timeframe associated with synthetic fuel from carbon dioxide. Such a synergistic system has the potential to significantly reduce our current emissions of CO2 since the carbon in the coal is used once for power production and then again for liquid hydrocarbon fuel synthesis. Synthetic fuel plant with capacities as low as 1000 barrels/day are commercially feasible using specially designed micro-reactors as shown in the attached photograph.(Ref:velocys system). Utilizing carbon dioxide from sea and air is the smartest way to mitigate climate change while maintaining fossil fuel based power plants and automobiles without any change or modifications. The same technique can also be applied for biomass gasification plants.

Saturday, March 22, 2014

It is time to switch over from Carbon to Hydrocarbon


When Carbon emission is high and the globe is warming due to such emissions then the simple and immediate solution to address this issue is to convert Carbon into Hydrocarbon, and the simplest Hydrocarbon is Methane (CH4).By simply introducing Hydrogen atom into Carbon atom the entire fuel property changes. For example the heating value of coal is only 5000-6500 kcal/kg at the maximum while the heating value of Methane (natural gas) increases to 9500 kcal/m3 by the above conversion. It means the same power generated by coal can be generated by using almost half the quantity of natural gas. Converting Carbon into substituted natural gas (SNG) is one way of addressing climate change in a short span of time. By switching over to SNG from coal will reduce the CO2 emission almost by 50%. Global warming due to GHG emission has become a serious environmental issue in recent times and more and more investments are made on renewable energy projects such as solar and wind etc. In spite of the major thrust on renewable energy projects the main source of power is still generated around the world using fossil fuel especially Coal due to its abundance and low cost. Moreover the investment already made on fossil fuel infrastructures are too big to be ignored and investment required to substitute coal-fired power plants by renewable energy are too large and gestation periods are too long to maintain the current electricity demand and to meet the future demands. The cost of renewable energy also is high and there is great resistance by consumers to switch over to renewable energy. Many Governments are reluctant to subsidize renewable energy due to their financial constraints. That is why countries like China which is growing at the rate of more than 8% pa are trying to decrease the ‘Carbon intensity’ rather than closing down the coal–fired power plants by setting up SNG (synthetic natural gas) plants by gasification of coal . This will reduce their Carbon emissions almost by 50% surpassing all other countries around the world in short span of time, thus meeting their emission targets agreed in “Kyoto protocol”. They can also meet the increasing electricity demand by using “syngas” generated by coal gasification plants, while reducing the Carbon pollution. They will also be able to produce Diesel and Gasoline from coal similar to the “SESOL” plant in South Africa which is already operating successfully for the past 50 years. “Leveraging Natural Gas to Reduce Greenhouse Gas Emissions” – a summary report by Center for Energy and Climate Solutions (C2ES) have highlighted the following in their report. “Recent technological advances have unleashed a boom in U.S. natural gas production, with expanded supplies and substantially lower prices projected well into the future. Because combusting natural gas yields fewer greenhouse gas emissions than coal or petroleum, the expanded use of natural gas offers significant opportunities to help address global climate change. The substitution of gas for coal in the power sector, for example, has contributed to a recent decline in U.S. greenhouse gas emissions. Natural gas, however, is not carbon-free. Apart from the emissions released by its combustion, natural gas is composed primarily of methane (CH4), a potent greenhouse gas, and the direct release of methane during production, transmission, and distribution may offset some of the potential climate benefits of its expanded use across the economy. This report explores the opportunities and challenges in leveraging the natural gas boom to achieve further reductions in U.S. greenhouse gas emissions. Examining the implications of expanded use in key sectors of the economy, it recommends policies and actions needed to maximize climate benefits of natural gas use in power generation, buildings, manufacturing, and transportation. More broadly, the report draws the following conclusions: •The expanded use of natural gas—as a replacement for coal and petroleum—can help our efforts to reduce greenhouse gas emissions in the near- to mid-term, even as the economy grows. In 2013, energy sector emissions are at the lowest levels since 1994, in part because of the substitution of natural gas for other fossil fuels, particularly coal. Total U.S. emissions are not expected to reach 2005 levels again until sometime after 2040. • Substitution of natural gas for other fossil fuels cannot be the sole basis for long-term U.S. efforts to address climate change because natural gas is a fossil fuel and its combustion emits greenhouse gases. To avoid dangerous climate change, greater reductions will be necessary than natural gas alone can provide. Ensuring that low-carbon investment dramatically expands must be a priority. Zero-emission sources of energy, such as wind, nuclear and solar, are critical, as are the use of carbon capture-and-storage technologies at fossil fuel plants and continued improvements in energy efficiency. • Along with substituting natural gas for other fossil fuels, direct releases of methane into the atmosphere must be minimized. It is important to better understand and more accurately measure the greenhouse gas emissions from natural gas production and use in order to achieve emissions reductions along the entire natural gas value chain.” Countries like India should emulate the Chinese model and become self-sufficient in meeting their growing energy demand without relying completely on imported Petroleum products. Import of petroleum products is the single largest foreign exchange drain for India, restricting their economic growth to less than 5%. Countries that rely completely on coal-fired power plants can set up coal hydro-gasification and gasification plants to reduce their Carbon emissions in the immediate future while setting up renewable energy projects as a long-term solution. Transiting Carbon economy into Hydrogen economy is a bumpy road and it will not be easy to achieve in a short span of time. The logical path for such transition will be to switch coal based power generation into gas based power generation for the following reasons. The largest Carbon emissions are from power generation and transportation. Transportation industry is already going through a transition from fossil fuel to Hydrogen. More future cars will be based either on Fuel cell or Electric and in both cases the fuel is the critical issue. Battery technology also will be an issue for Electric cars. It is more practical to generate Hydrogen from natural gas and to set up Hydrogen fuel stations than generating Hydrogen from solar powered water electrolysis. With improvement on Fuel cell technology it is more likely that PEM Fuel cell may be able to operate on Hydrogen derived from natural gas that is completely free from any Sulphur compounds. Even for Electric cars, natural gas will play an important role as a fuel for power generation and distribution in the near future as we transit from Carbon economy to full fledged Hydrogen economy. Countries like India with highest economic growth will have to be pragmatic by setting up more SNG plants with indigenous coal than depending on imported LNG. India has only two LNG terminals currently in operation but do not have gas transmission infrastructure. With increasing demand for natural gas from all over the world and lack of LNG receiving terminals, India will have to face a serious fuel and power shortage in the future. By installing more coal gasification and SNG plants with down-stream products like like Diesel and petrol, India can overcome the fuel and power shortage. In fact India set up the first coal gasification and Ammonia and Urea plant in Neyveli (Neyveli Lignite Corporation) way back in Fifties after her independence and it is time to visit the past. Renewable energy is certainly the long term solution for energy demand but we have to consider the amount of GHG emission associated with production PV solar panels, wind turbines and batteries. There is no easy fix to reduce GHG emission in short span of time but switching Carbon to hydrocarbon will certainly reduce the emissions scientists are advocating and water (steam) is the key to introduce such Hydrogen atom into the Carbon atom. That is why we always believe “Water and Energy are two sides of the same coin” and renewable Hydrogen will be the key to our future energy. President Obama's recent announcement of Carbon reduction plan by coal-fired power plants in USA is a bold step in the right direction.A more ambitious plan may be required to avoid catastrophic climate change that might cost billions of dollar in health related issues and on rebuilding damaged infrastructure. For more information on the above topic please refer to the following link: Source: Harvard University Link: Coal to Natural gas Fuel switching and Carbon dioxide (CO2) emission reduction. Date: Apr 2011. Author: Jackson Salovaara.

Thursday, February 13, 2014

Desalination plants contribute to climate change


There is a growing evidence that shows increasing salinity of seawater effects the “water cycle” resulting in climate change. Apart from the natural cycle, the highly saline brine discharged from man-made “desalination” plants around the world also contributes to the increasing salinity of seawater. There are only few desalination plants suppliers world-wide who build such large scale desalination plants and they use only decades old desalination technologies. They recover 35% of fresh water and discharge 65% highly concentrated, toxic effluent back into the sea. Their main focus of innovation is to reduce the energy consumption because it is an energy intensive process. Such energy comes mainly from fossil fuels. The result is unabated Carbon emission, toxic brine discharge into the ocean, warm saline water discharge into the ocean from “once through cooling towers” from co-located power and desalination plants.Currently about 5000 million cubic meters of fresh water is generated per year from seawater desalination plants around the world; this capacity is expected to increase to 9000 million cubic meter per year by 2030.The brine outfall from desalination plants will amount to a staggering 30 billion cubic meters/yr. Such a huge volume of saline water with salinity ranging 70,000 ppm up to 95,000 ppm will certainly alter the water chemistry of the ocean. Desalination plant suppliers are not interested in “innovation” that can recover fresh water without “polluting” the sea. They rather justify using “environmental impact study” which invariably concludes there is absolutely no impact on environment and any toxic discharge into the sea is “harmless”. This practice is going on for decades without any check. Dwindling fish population world–wide is a direct impact of such discharge. Financial institutions such as world bank, Asian development bank etc are willingly finance such projects without questioning such technologies and their impact on marine environment. Their focus is only “return on investment”–the only criteria that is required for funding and not the “cost and benefit analysis”. A detailed analysis will reveal “handful of rich and powerful” Governments and individuals can influence the world’s climate intentionally or unintentionally. The same “rich and powerful” can shun any innovations “that might threaten their business model” and “ nip such innovations or inventions at their bud” because they simply do not believe in Research and Development or unwilling to direct their “cash flow” into R&D because they do not want any threat for their existing technologies. There are very few financial professionals who can think “outside the box” or predict their financial impact due to innovative technologies of the future. Their financial decisions reflect the sentiments of the financial institutions, namely “the return on investment”. “When you read about human-induced climate change it's often about melting glaciers and sea ice, increasing frequency of heat waves and powerful storms. Occasionally you'll hear about the acidification of the oceans too. What you don't often hear about is the saltiness of the seas. But according to a new piece of research just published inGeophysical Research Letters that is changing too. The saltiness, or salinity, of the oceans is controlled by how much water is entering the oceans from rivers and rain versus how much is evaporating, known as 'The Water Cycle'. The more sunshine and heat there is, the more water can evaporate, leaving the salts behind in higher concentrations in some places. Over time, those changes spread out as water moves, changing the salinity profiles of the oceans. Oceanographers from Scripps Institution of Oceanography and Lawrence Livermore National Laboratory fingerprinted salinity changes from 1955 to 2004 from 60 degrees south latitude to 60 degrees north latitude and down to the depth of 700 meters in the Atlantic, Pacific and Indian oceans. They found salinity changes that matched what they expected from such natural changes as El Niño or volcanic eruptions (the latter can lower evaporation by shading and cooling the atmosphere). Next the ocean data was compared to 11,000 years of ocean data generated by simulations from 20 of the latest global climate models. When they did that they found that the changes seen in the oceans matched those that would be expected from human forcing of the climate. When they combined temperature changes with the salinity, the human imprint is even clearer, they reported. "These results add to the evidence that human forcing of the climate is already taking place, and already changing the climate in ways that will have a profound impact on people throughout the world in coming decades," the oceanographers conclude.” (Ref: Larry O'Hanlon, Discovery News) SALINITY Although everyone knows that seawater is salty, few know that even small variations in ocean surface salinity (i.e., concentration of dissolved salts) can have dramatic effects on the water cycle and ocean circulation. Throughout Earth's history, certain processes have served to make the ocean salty. The weathering of rocks delivers minerals, including salt, into the ocean. Evaporation of ocean water and formation of sea ice both increase the salinity of the ocean. However these "salinity raising" factors are continually counterbalanced by processes that decrease salinity such as the continuous input of fresh water from rivers, precipitation of rain and snow, and melting of ice. SALINITY & THE WATER CYCLE Understanding why the sea is salty begins with knowing how water cycles among the ocean's physical states: liquid, vapor, and ice. As a liquid, water dissolves rocks and sediments and reacts with emissions from volcanoes and hydrothermal vents. This creates a complex solution of mineral salts in our ocean basins. Conversely, in other states such as vapor and ice, water and salt are incompatible: water vapor and ice are essentially salt free. Since 86% of global evaporation and 78% of global precipitation occur over the ocean, ocean surface salinity is the key variable for understanding how fresh water input and output affects ocean dynamics. By tracking ocean surface salinity we can directly monitor variations in the water cycle: land runoff, sea ice freezing and melting, and evaporation and precipitation over the oceans. SALINITY, OCEAN CIRCULATION & CLIMATE Surface winds drive currents in the upper ocean. Deep below the surface, however, ocean circulation is primarily driven by changes in seawater density, which is determined by salinity and temperature. In some regions such as the North Atlantic near Greenland, cooled high-salinity surface waters can become dense enough to sink to great depths. The 'Global Conveyor Belt' visualization (below) shows a simplified model of how this type of circulation would work as an interconnected system. The ocean stores more heat in the uppermost three (3) meters than the entire atmosphere. Thus density-controlled circulation is key to transporting heat in the ocean and maintaining Earth's climate. Excess heat associated with the increase in global temperature during the last century is being absorbed and moved by the ocean. In addition, studies suggest that seawater is becoming fresher in high latitudes and tropical areas dominated by rain, while in sub-tropical high evaporation regions, waters are getting saltier. Such changes in the water cycle could significantly impact not only ocean circulation but also the climate in which we live." (Ref: NASA earth science) The four main forces that control the earth’s climate are “Sea, Sun, Moon and earth’s rotation and interference by human beings will alter the equilibrium of the system. In order to maintain its equilibrium, Nature is forced to change the climate unpredictably with devastating effects. We cannot underestimate the pollution caused by human beings because they are capable of altering the Nature’s equilibrium over a period of time no matter how “miniscule” (parts per millions or billions) the pollution may be. Any future investment on large scale infrastructures should take into account the “human induced climate change” in their model and projections, failing which “climate change” will prove them wrong and the consequences will be dire. Reference : Environmental Impacts of Seawater Desalination: Arabian Gulf Case Study Mohamed A. Dawoud1 and Mohamed M. Al Mulla 1 Water Resources Department, Environment Agency, Abu Dhabi, United Arab Emirates 2.Ministry of Environment and Water, Dubai, United Arab Emirates

Friday, January 3, 2014

Coal may be the Problem and the Solution too!


Can renewable energy really stop GHG emissions and global warming? Renewable energy is slowly but steadily becoming a choice of energy of the people due to its potential to reduce GHG emissions and global warming. The changing weather pattern around the world in recent times are testimony for such a warming globe. Can renewable energy really reduce the GHG emissions and reduce the global warming predicted by scientists? Thousands of large coal- fired power plants are already under implementation or planning stages. According to World’s resources institute, their key findings are : 1. According to IEA estimates, global coal consumption reached 7,238 million tonnes in 2010. China accounted for 46 percent of consumption, followed by the United States (13 percent), and India (9 percent). 2. According to WRI’s estimates, 1,199 new coal-fired plants, with a total installed capacity of 1,401,278 megawatts (MW), are being proposed globally. These projects are spread across 59 countries. China and India together account for 76 percent of the proposed new coal power capacities. 3. New coal-fired plants have been proposed in 10 developing countries: Cambodia, Dominican Republic, Guatemala, Laos, Morocco, Namibia, Oman, Senegal, Sri Lanka, and Uzbekistan. Currently, there is limited or no capacity for domestic coal production in any of these countries. 4. Our analysis found that 483 power companies have proposed new coal-fired plants. With 66 proposed projects, Huaneng (Chinese) has proposed the most, followed by Guodian (Chinese), and NTPC (Indian). 5. The “Big Five” Chinese power companies (Datang, Huaneng, Guodian, Huadian, and China Power Investment) are the world’s biggest coal-fired power producers, and are among the top developers of proposed new coal-fired plants. 6. State-owned power companies play a dominant role in proposing new coal-fired plant projects in China, Turkey, Indonesia, Vietnam, South Africa, Czech Republic and many other countries. 7. Chinese, German, and Indian power companies are notably increasingly active in transnational coal-fired project development. 8. According to IEA estimates, the global coal trade rose by 13.4 percent in 2010, reaching 1,083 million tonnes. 9. The demands of the global coal trade have shifted from the Atlantic market (driven by Germany, the United Kingdom, France and the United States) to the Pacific market (driven by Japan, China, South Korea, India and Taiwan). In response to this trend, many new infrastructure development projects have been proposed. 10. Motivated by the growing Pacific market, Australia is proposing to increase new mine and new port capacity up to 900 million tonnes per annum (Mtpa) — three times its current coal export capacity. The above statistics is a clear indication that GHG emissions by these new coal-fired power plants will increase substantially. A rough estimation indicates that these new plants will emit Carbon dioxide at the rate of 1.37 mil tons of CO2/hr or 9.90 billion tons of CO2 /yr in addition to the existing 36.31 Gigatons/yr (36.31 billion tons/yr) in 2009. (According to CO2now.org). If this is true, the total CO2 emissions will double in less than 4 years. If the capacity of new PV solar plants are also increased substantially then the CO2 emissions from PV solar plants will also contribute additionally to the above. There is no way the CO2 reduction to the 2002 level can be achieved and the world will be clearly heading for disastrous consequences due to climate change. The best option to reduce GHG emissions while meeting the increasing power demand around the world will be to recycle the Carbon emissions in the form of a Hydrocarbon with the help of Hydrogen. The cheapest source of Hydrogen is coal. The world has no better option than gasifying the coal instead of combusting the coal. Capturing Carbon and recycling it as a fuel : Solar power, wind power and other renewable energies generated 6.5% of the world’s power in 2012. This is part of a rising trend , but there is a very long way to go before renewable sources generate as much energy as coal and other fossil fuels. Solar panel of 1m2 size requires 2.4kg of high grade silica and Coke and it consumes 1050 Kwh of electricity, mostly generated by fossil fuel based power plants. But 1m2 solar panel can generate only 150kwh/yr and it will require at least 7 years to generate the power used to produce 1m2 solar panel in the first place. More solar panels mean more electricity consumption and more GREEN HOUSE GAS EMISSIONS.A large quantity of CO2 will have to be emitted into the atmosphere for the production of several GW (Giga- watts) of solar power.With thousands of newly planned and implemented coal fired power plants in the near future the greenhouse gas emission is likely to go up. It could take at least thirty years before renewable energy is as strong in the marketplace as non-renewable sources. In consequence, there is a need to use fossil fuels more effectively and less detrimentally until the renewables can play a major role in global energy production. One approach tried for more than a decade has been carbon capture, which stops polluting materials getting into the atmosphere; however subsequent storage of the collected materials can make this process expensive. Now an Australian based company has gone one step further and designed a process that not only collects CO2 emissions, but also turns it into a fuel by using the same coal! Clean Energy and Water Technologies has developed an innovative solution to avoid carbon emissions from power plants. The novel approach uses coal to capture carbon dioxide emissions (CO2 ) from coal-fired power plants and convert them into synthetic natural gas (SNG). Synthetic natural gas would then replace coal as a fuel for further power generation and the cycle would continue. No coal is required for further power generation. Through this method, the captured Carbon could be recycled again and again in the form of a Hydrocarbon fuel (SNG) with no harmful gas emissions. Carbon is an asset and not a liability. If Carbon is simply burnt away just to generate heat and power then it is a bad science, because the same Carbon can be used to generate several products by simply recycling it instead of venting out into the atmosphere. Carbon is the backbone of all valuable products we use every day from plastics to life saving drugs! As well as seeking a patent for this breakthrough innovation, Clean Energy and Water Technologies is seeking investment for a demonstration plant. Once demonstrated, it would then be possible to retrofit current coal-fired power stations with the new technology, increasing their economic sustainability and reducing their impact on the environment. 1. The Economic Pressures : Power is an integral part of human civilization. With the steady increase in human population and industrialization the demands for energy and clean water has reached unprecedented levels. The gap between the demand and supply is steadily pushing the cost of power and water higher, whilst the supply of coal, oil and gas is dwindling. The prospect of climate change has compounded problems. Many countries around the world have started to use renewable energy such as solar, wind, hydro and geo-thermal power; but emerging economies such as India and China are unable to meet their demands without using fossil fuels. At present, it is far cheaper to use the existing infrastructures associated with non-renewable energy, such as coal-fired power stations. Renewable energy sources are intermittent in nature and require large storage and large initial investment, with sophisticated technologies pushing the cost of investment higher. Governments could use environmental tariffs on power use to help make renewable energy more competitive, but politicians know that the public tend to not like such an approach. 2. Demonstration Plant: The estimated investment required for a demonstration plant is likely to be $10 million; however the potential for a good return on investment is high, as shown by the following estimation for a 100MW plant. • A 100MW coal-fired power plant will emit 98 Mt/hr CO2 • Coal consumption will be about 54Mt/hr • To convert 98Mt/hr CO2 into SNG, the plant needs to generate 390,000m3/hr syngas by coal gasification. • The gasification plant will require 336 Mt/hr coal and 371 m3/hr water. • The net water requirement will be : 95.70m3/hr • The SNG generated by the above plant will be : 95,700m3/hr and steam as by-product : 115Mt/hr. • Potentially SNG can generate a gross power of 500 MWS by a Gas turbine with combined cycle operation. • The plant can generate 500MW (five times more than the coal-fired plant) from CO2 emissions. • Existing 100MW coal fired power plant can use SNG in place of coal and sell the surplus SNG to consumers. • Surplus SNG will be about 75,000 m3/hr.( 2400 mm Btu/hr) with sale value of $36,000/hr. @ $15/mmBtu. • Annual sales revenue from sale of surplus SNG will be : $ 300 mil/yr. • The entire cost of coal gasification and SNG plant can be recovered back in less than 5 years. 3. Carbon Capture and Storage : Carbon capture and storage is the process of capturing waste carbon dioxide (CO2 ) from large point sources, such as fossil fuel power plants, transporting it to a storage site, and depositing it where it will not enter the atmosphere, normally an underground geological formation. The aim is to prevent the release of large quantities of CO2 into the atmosphere. It is a potential means of mitigating the contribution of fossil fuel emissions to global warming and ocean acidification. The long term storage of CO2 is a relatively new concept. The first commercial example was Wey burn in 2000. Carbon capture and storage applied to a modern conventional power plant could reduce CO2 emissions to the atmosphere by approximately 80–90%, but may increase the fuel needs of a coal-fired plant by 25–40%. These and other system costs are estimated to increase the cost of the energy produced by 21–91% for purpose built plants. Applying the technology to existing plants could be even more expensive. 4. Global Warming : Global warming is the rise in the average temperature of Earth's atmosphere and oceans since the late 19th century and its projected continuation. Since the early 20th century, Earth's mean surface temperature has increased by about 0.8 °C (1.4 °F), with about two-thirds of the increase occurring since 1980. Scientists are more than 90% certain that it is primarily caused by increasing concentrations of greenhouse gases produced by human activities such as the burning of fossil fuels by coal-fired power plants. 5. Greenhouse Gases Without the earth's atmosphere the temperature across almost the entire surface of the earth would be below freezing. The major greenhouse gases are water vapour, which causes about 36–70% of the greenhouse effect; carbon dioxide (CO2 ), which causes 9–26%; methane (CH4), which causes 4–9%; and ozone (O3), which causes 3–7%. According to work published in 2007, the concentrations of CO2 and methane have increased by 36% and 148% respectively since 1750. These levels are much higher than at any time during the last 800,000 years, the period for which reliable data has been extracted from ice cores. 6. The Future of Global Warming?: Climate model projections were summarized in the 2007 Fourth Assessment Report by the Intergovernmental Panel on Climate Change (IPCC). They indicated that during the 21st century the global surface temperature is likely to rise a further 1.1 to 2.9 °C (2 to 5.2 °F) for their lowest emissions scenario and 2.4 to 6.4 °C (4.3 to 11.5 °F) for their highest. 7. The Impact of Global Warming? : Future climate change and associated impacts will vary from region to region around the globe. The effects of an increase in global temperature include a rise in sea levels and a change in the amount and pattern of precipitation, as well a probable expansion of subtropical deserts. Warming is expected to be strongest in the Arctic and would be associated with the continuing retreat of glaciers, permafrost and sea ice. Other likely effects of the warming include a more frequent occurrence of extreme weather events including heat waves, droughts and heavy rainfall, ocean acidification and species extinctions due to shifting temperature regimes. There is a divided opinion among scientists on climate science. Major power consuming countries like the US, Europe, Japan and Australia are reluctant to sign the Kyoto Protocol and agree to a legally binding agreement. This has resulted in non-cooperation among the nations and the world is divided on this issue. Such disagreement has hampered development of non-renewable energy. Ahilan Raman is the inventor of the innovative process mentioned in the article. If you have any further questions or like to become a part of this innovative technology, please feel free to contact him directly by writing to this blog.

Tuesday, August 20, 2013

Clean power and water for remote island communities


Most of the renewable energy projects that are currently set up around the world are grid connected with feed-in power tariff arrangement. People can generate their own electricity by solar/wind to meet their demand and supply the surplus power to the grid at an agreed power rates. They can also draw power from the grid if there is any short fall in their production of renewable energy. It is two way traffic. There is an opportunity for people to generate revenue by sale of surplus power. It is an incentive for people to invest on renewable energy and that is why the investment on renewable energy has steadily increased over a period of time. But this is not the case with many developing and under developed countries. The situation is still worse in many islands where there is no centralized power generation at all or power distribution through grids. They depend on diesel generators. Even to transport diesel from mainland they have to use diesel operated boats. They have no drinking water even though they are surrounded by sea. I happened to visit a remote island in PNG few years ago and saw the plight of those people first hand. They live in absolute poverty and nobody cares to provide them a solution. Their voices are never heard and permanently drowned in the deafening roar of the sea. The problems of supplying clean power and water to these remote islands are not only political but also technical and commercial in nature. One has to use only commercially available systems and components which are basically meant for a single or three phase grid connected power supplies. Even though renewable energy sources basically generate only direct current (DC), one has to convert them into alternate current (AC) for easy distribution and to utilize appliances which are basically designed for AC operations. Isolated communities like islands can use direct current and also use DC operated appliances because they are commercially available and they are more efficient. Anyhow most of the house appliances need DC supply and AC/DC converters are commonly used for this purpose thus sacrificing efficiency in the process. They also need better storage solutions because they are not connected to the grid and they have to necessarily store power for several days. Some of these islands are connected with inefficient wind turbines backed by diesel generators. It is an absolute necessity to incorporate a long term storage capabilities in the system if one has to provide a continuous power and clean water. If the wind velocity is not sufficient (during off seasons) or if there is no sun (cloudy) for days together and if there is not sufficient storage capacity, then all the investment made on the project will be of no use. Any half baked solutions will not serve the real purpose. There are also commercial problems because a well designed system will cost more, which will eventually increase the power tariff. Unless the Government subsidizes the power sufficiently, people cannot afford to pay for their electricity or water. It requires a careful planning and community consultations to set up a ‘stand alone renewable energy projects in islands’. Governments in the pacific islands should act with great urgency because there is also a risk of inundation by sea level rising due to global warming. We are in the process of designing a solution to provide such islands with clean power, clean drinking water and even wireless connectivity for schools so that children can get education. It may sound ambitious but it is the first step one has to take into long journey of sustainability and self reliance by these isolated communities. There is a good possibility that such island may one day become completely independent and self sufficient with clean power and water. The same solution can be implemented in other countries too. Many countries have necessary infrastructure to generate and distribute power yet they suffer regular power cuts and black outs due to inefficiencies in their system. Our proposed solution can provide uninterrupted clean power and water because the system will have long duration centralized energy storage. We have made a detailed analysis of various alternatives available for the above purpose using Homer hybrid solution software. The solution proposes a PV solar with storage solutions using battery bank as well as Fuel cell back up. The solution also proposes long duration of storage ranging from few hours up to a fortnight .It is a standalone system with complete energy management and suitable for remote operations. The solution can also incorporate wind turbine in addition to PV solar depending upon the location and wind velocity profile. The model is to supply clean power and drinking water for 600 families with an average 3 people in a family. The system will supply power at the rate of 1.50kwhrs/day/person (1800 x1.5 = 2700kwhrs/day) and drinking water at the rate of 200 lits/day/person (1800 x 200 lit/person= 360,000 lits/day).The power for a desalination plant will be 1980 kwhrs/day. The system is designed for a total power generation capacity of 4680Khwhrs/day. The model is based on battery storage as well as based on Hydrogen storage with varying durations. Comparative analysis is shown in the figures. The first window is based on PV solar with 2 months Hydrogen autonomy. The third window is based on PV solar with battery 5 days and 17 hrs Hydrogen autonomy. The fourth and fifth window is based on PV solar with battery 17 hrs and Hydrogen 18 hrs storage autonomy with varying panel cost. The sixth window is based on PV solar with 172 hrs (one week) battery autonomy. The resulting analysis indicates that a centralized Hydrogen storage with Fuel cell back up offers the most economical solution even though the power tariff is higher than a system with battery storage. The investment for long duration battery storage is almost double that of Hydrogen based solution. The cost can further be reduced if and when the Electrolyzers as well as Fuel cells are manufactured on mass scale. The added advantage with this system is it can also provide Hydrogen fuel for Fuel cell cars and boats substituting diesel. One day it may become a reality that these isolated islands can become completely self- sufficient in terms of water, fuel and power with no greenhouse gas emissions. This solution can be replicated to all the islands all over the world. Note: The above system can also be installed in many developing countries in Africa which is an emerging market. An Africa-Australia Infrastructure Conference will be be held in Melbourne, Australia on 2-3 September 2013 and it will offer a platform for Australian companies to invest in Africa on infrastructural projects.